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Abstract

The effectiveness of deep learning is often attributed to the ability of neural net-
works to perform representation learning, a transformation that maps input data
into a vector representation (usually ∈ R𝑑 with small 𝑑 much lower than the data
dimension). Such representation spaces can reorganize data with inductive structures
(e.g., representation distances correlating with perceptual similarity) that make solv-
ing general new tasks much easier (e.g., groundtruth semantic classification function
is smoother w.r.t. a good representation space). This dissertation focuses on the core
skills of general intelligent agents—perception and decision making. We show how
these capabilities can be reduced to learning good representations that capture vari-
ous structures of the world. In particular, we solve reinforcement learning problems
via representation learning alone, thus making a step forward towards building intel-
ligent agents by learning good representations. Moreover, we study the convergent
trend of strong representations from different models and modalities, and propose the
Platonic Representation Hypothesis : stronger models better approximate a Platonic
representation fit to the structures of our reality. We argue that this representation is
a critical component in building better models and intelligent artificial agents. Finally,
we outline several future directions towards learning this Platonic representation via
pretraining and adaptation.
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Chapter 1

Introduction

Modern machine learning systems are pipelines. Raw data is first transformed into

intermediate representations, often through the use of powerful pretrained neural

network models. These representations are then used for making complex decisions

in specific downstream tasks. Such pipelines are increasingly popular across various

domains, ranging from recommendation systems powered by learned embeddings of

users and products, to robotic control based on estimated 3D environment mapping.

In particular, this dissertation focuses on a particular complex pipeline—artificial

intelligence (AI) agents that use machine learning models to process various inputs

and to interact with the world with its decisions.

The deciding factor in such a complex system’s performance is its intermediate

representations from the learned neural networks. These representations geometri-

cally organize input data in a way that determines the effectiveness of learning and

decision-making on top of them. Indeed, large pretrained models that provide good

representations of data are already the cornerstones of modern machine learning.

Specialized systems, such as medical condition classifiers, are now usually built via

learning a prediction head on top of pretrained representations, along with possible

finetuning of the pretrained model (Steiner and Pilgrim, 2024; Xu et al., 2024).

The goal of this dissertation is to explore the extent that strong perceptual and

decision-making capabilities can be directly obtained from good represen-

tations without requiring much agent-specific or task-specific learning.
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We study how the structure of learned representations can make downstream tasks

easy, and sometimes trivial. For example, a representation invariant to imperceptible

variations in model input greatly improves sample efficiency of solving perceptual

problems (e.g., image classification) (Chapter 2). A representation space where dis-

tances align with decision costs offers a powerful heuristic for planning behaviors over

long horizons (Chapters 3 and 4). Conversely, a poorly chosen structure may obscure

critical signals, and lead to a failed system (Chapter 5).

One important contribution of this dissertation is that we make the connection

between representation learning and reinforcement learning (or decision-making).

While many reinforcement learning methods have used auxiliary losses to promote

good representations (Ni et al., 2024; Laskin et al., 2020a; Zhang et al., 2020a), we

instead solve the reinforcement learning problem by representation learning alone

without any other objectives in Chapters 3 and 4. Furthermore, in Chapter 5, we

show that good representations can automatically identify the abstract easy-to-solve

reinforcement learning problems from the noisy complex world.

Perception and decision-making are core capabilities for building intelligent artificial

agents. After formulating them as representation learning tasks, we take one step

further, and hypothesize an ultimate representation that all strong machine learning

models are converging to, and that working towards learning this representation will

make the most important progress to intelligent agents (Chapter 6).

1.1 Representations in Neural Networks

In this dissertation, we restrict our attention to representations that are vector embed-

dings (i.e., latents) induces by neural networks (sometimes referred to as encoders).

Such neural networks are often pre-trained with supervised or self-supervised objec-

tives, such as a truncated classification network, or a next-token predictor transformer

network. In particular, for input data 𝑥 ∈ 𝒳 and a neural network 𝑓 : 𝒳 → R𝑛, we

say that 𝑓(𝑥) is the (vector) embedding of data 𝑥.

Our study focuses on the geometric structures induced by this embedding of 𝑓 . For
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example, the similarity between 𝑥1 ∈ 𝒳 and 𝑥2 ∈ 𝒳 can be defined as ⟨𝑓(𝑥1), 𝑓(𝑥2)⟩;

the distance between them can be defined as ‖𝑓(𝑥1)− 𝑓(𝑥2)‖2 (or 𝑑(𝑓(𝑥1), 𝑓(𝑥2)) for

some non-Euclidean 𝑑). In other words, a neural network 𝑓 defines a geometry over

data 𝒳 in its representation space ; and learning 𝑓 is essentially about identify the

desired geometry in a data-driven way. In this dissertation, we study the representation

geometric structures indued by neural networks, and how they relate to perception

and decision-making capabilities of artificial agents.

1.2 Dissertation Outline

The dissertation consists of three parts:

1. Part I: Perception as Representation Learning;

2. Part II: Decision-Making as Representation Learning;

3. Part III: The Platonic Representation Hypothesis.

We outline each part below in subsections.

1.2.1 Part I: Perception as Representation Learning

structured representation 
distance ≈ perceptual similarity

classification 
becomes easy

input data

aircraft

vehicle

similar pair

Figure 1-1: Similarity structure improves perception.
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Chapter 2: Contrastive Representation Learning of Perceptual Relationships

No image is an island. Perception requires contextualizing each piece of information

in its connection with the rest of the world through a graph of perceptual similarity,

co-occurrence, and other relationships (James, 1890; Isola, 2015b). However, these

relationships are tricky to model. Images with significant pixel variations can still be

perceived similarly (e.g., the similar pair in Figure 1-1).

We present a geometric approach to train and evaluate encoder models that

transform data to a structured representation space, where distance approximates

perceptual similarity and co-occurrence. These learned structures can enhance many

perception tasks, such as classification (Figure 1-1). We formulate perceptual relation-

ships with two quantifiable geometric properties of representation space: alignment,

which ensures related pairs map to nearby representations, and uniformity, which

preserves data information in the representation space. We show that downstream

performance strongly agrees with both geometric properties across diverse tasks in

vision and language. We conduct a geometric analysis of contrastive representation

learning, a method driving many recent advances like text-to-image synthesis. In

distinction from prior information-theoretic approaches, we prove that contrastive

learning essentially optimizes for alignment and uniformity with realistic assumptions

and empirical validations.

1.2.2 Part II: Decision-Making as Representation Learning

Chapters 3 and 4: Reinforcement Learning as Quasimetric Representation

Learning The machine learning revolution will not be single-task. Many recent

advances are powered by generalist systems whose behavior is controllable by user-

specified goals (e.g., instruction-following language models). For decision-making,

strategies for reaching different goals are not isolated. For example, knowing how to

“open fridge” makes it easy to “get milk”. Such dependencies highlight an important

asymmetric structure in decision-making, where some goals lead to others, but not vice

versa, due to the inherent asymmetry of our world (e.g., time and gravity). However,

previous decision-making methods often overlook such goal structures, resulting in
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structured representation 
distance = cost to reach state

goal-reaching 
becomes easy

optimal path  
to reach goal 

(env. geodesic)

latent 
geodesic

target goal

current state

quasimetric geometry

Figure 1-2: Distance structure guides agent to reach goals.

poor sample efficiency, or incorrectly assume symmetry, failing to make effective

decisions in the asymmetric world Chapter 5.

We use quasimetric geometry, the asymmetric relaxation of metric geometry, to

model decision-making structures. By accurately capturing decision costs among

different states, quasimetric geometry directly produces optimal goal-reaching agents

(Figure 1-2). We establishe learning foundations for quasimetrics (Chapter 4), and

develop a quasimetric-based algorithm that advanced the frontier of goal-reaching

agents (Chapter 5).

In particular, we address several key challenges in the modeling and learning of

quasimetric distance structures:

• Modeling (Chapter 3): We conduct the first learning-theoretical analyses on quasi-

metrics. With mathematical tools from extremal combinatorics, we prove that

quasimetrics are not learnable by the unconstrained neural network architectures

commonly used for goal-reaching decision-making. We designe new architectures

that encode data into a quasimetric representation space, with strong theoretical

guarantees and empirical performances.

• Learning (Chapter 4): I developed a decision-making algorithm that at its core

learns a quasimetric representation space to guide goal-reaching agents (Figure 1-2).

In distinction to common approaches, it is based on quasimetric geometry of the
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decision-making problem, and efficiently learns optimal behavior from suboptimal

data with theoretical guarantees under diverse problem settings (e.g., continuous

action space). Over goal-reaching benchmarks, our algorithm robustly recovers

quasimetric structures of the environment, and beats prior art by 43% in performance

and by up to 3.9× in sample efficiency.

decision-making is robust 
and generalizes better

optimal decision for

structured representation 
invariant to noise factors

agent observations
with task “open window”

denoised

&

&

Figure 1-3: Abstraction structure enables robust decisions that are invariant to noises and
generalize to equivalent scenarios.

Chapter 5: Denoised MDPs: Learning Latent World Models Better Than

the World Itself Abstract reasoning is key to intelligence. Even with a good

perceptual representation, autonomous agents are often provided more than enough

information for their task, and must extract task-specific signals from rich observations.

However, the typical framework for sequential decision making, Markov Decision

Process (MDP), models the entire agent observation in an unstructured way, and falls

short for any separation between signal and noise. To address these shortcomings, we

reformulate the MDP framework with a factorized model of agent observations. We

show that the factorization structure explicitly identifies information necessary for

optimal decision-making without loss of generality.
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We develop an algorithm to extract such decision-critical signals via a structured

representation space (Figure 1-3) without requiring additional supervision. Our

method can denoise observations for any decision-making algorithm, yielding 25%-60%

performance gain on various benchmark tasks.

1.2.3 Part III: The Platonic Representation Hypothesis

Figure 1-4: The Platonic Representation Hypothesis: Neural networks, trained with
different objectives on different data and modalities, are converging to a shared statistical
model of reality in their representation spaces.

Chapter 6: The Platonic Representation Hypothesis Strong representations

can solve diverse tasks in perception and decision-making by capturing some funda-

mental statistical structures of the world (Chapters 2, 4 and 5). Do these have to be

different representations? Can one representation rule them all? We empirically study

the current best foundation models, and found that all strong models converge towards

the same way of representing the world regardless of data, objective, or modality. Based

on this convergence, we conjecture the Platonic Representation Hypothesis that this

unique representation captures the core (statistical) structure of the world by learning

on various projections (e.g., modalities, datasets) of it (Figure 1-4). Further more,

we argue that recovering this Platonic representations is an crucial part of building

intelligent agents that can solve diverse interactive tasks.
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Figure 1-5: Recovering the Platonic representation from different sources (projections). This
dissertation explored multiple parts of the arrows (bold and underlined).

We argue that working towards recovering the Platonic representation is one of the

most important future goals. This dissertation has explored various methods that allow

us to learn from individual projections (Figure 1-5). However, in order to combine

different sources, we must explore effective methods to integrate new information

into existing representations, and adapt them to more modalities/projections. In

Chapter 7, we propose several important questions in this aspect for future research.

30



Part I

Perception as Representation

Learning

31



32



Chapter 2

Contrastive Representation Learning

of Perceptual Relationships

Contrastive representation learning has been outstandingly successful in practice. In

this chapter, we identify two key geometric properties related to the contrastive loss:

(1) alignment (closeness) of features from perceptually similar positive pairs, and (2)

uniformity of the induced distribution of the (normalized) features on the hypersphere.

We prove that, asymptotically, the contrastive loss optimizes these properties, and

analyze their positive effects on downstream tasks. Empirically, we introduce an

optimizable metric to quantify each property. Extensive experiments on standard

vision and language datasets confirm the strong agreement between both metrics and

downstream task performance. Directly optimizing for these two metrics leads to

representations with comparable or better performance at downstream tasks than

contrastive learning.

This chapter is based on published work:

1. Understanding Contrastive Representation Learning Through Alignment and

Uniformity on the Hypersphere with co-author Phillip Isola at the International

Conference on Machine Learning (ICML) 2020 (Wang and Isola, 2020).
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Alignment: Similar samples have similar features
Alignment: Similar samples have similar

features.
(Figure inspired by Tian et al. (2020b).)

Feature Density

Uniformity: Preserve maximal informationUniformity: Preserve maximal information.

Figure 2-1: Illustration of alignment and uniformity of feature distributions on the output
unit hypersphere. STL-10 (Coates et al., 2011) images are used for demonstration.

2.1 Introduction

A vast number of recent empirical works learn representations with a unit ℓ2 norm

constraint, effectively restricting the output space to the unit hypersphere (Parkhi

et al., 2015; Schroff et al., 2015; Liu et al., 2017; Hasnat et al., 2017; Wang et al., 2017;

Bojanowski and Joulin, 2017; Mettes et al., 2019; Hou et al., 2019; Davidson et al.,

2018; Xu and Durrett, 2018), including many unsupervised contrastive representation

learning methods (Wu et al., 2018; Bachman et al., 2019; Tian et al., 2020b; He et al.,

2019; Chen et al., 2020a).

Intuitively, having the features live on the unit hypersphere leads to several desirable

traits. Fixed-norm vectors are known to improve training stability in modern machine

learning where dot products are ubiquitous (Xu and Durrett, 2018; Wang et al., 2017).

Moreover, if features of a class are sufficiently well clustered, they are linearly separable

with the rest of feature space (see Figure 2-2), a common criterion used to evaluate

representation quality.

While the unit hypersphere is a popular choice of feature space, not all encoders

that map onto it are created equal. Recent works argue that representations should

additionally be invariant to unnecessary details, and preserve as much information

as possible (Oord et al., 2018; Tian et al., 2020b; Hjelm et al., 2018; Bachman et al.,
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Hypersphere: Clustered sets are linearly separable

    Linear
    classifier

Figure 2-2: Hypersphere: When classes are well-clustered (forming spherical caps), they
are linearly separable. The same does not hold for Euclidean spaces.

2019). Let us call these two properties alignment and uniformity (see Figure 2-1).

Alignment favors encoders that assign similar features to similar samples. Uniformity

prefers a feature distribution that preserves maximal information, i.e., the uniform

distribution on the unit hypersphere.

In this work, we analyze the alignment and uniformity properties. We show

that a currently popular form of contrastive representation learning in fact directly

optimizes for these two properties in the limit of infinite negative samples. We propose

theoretically-motivated metrics for alignment and uniformity, and observe strong

agreement between them and downstream task performance. Remarkably, directly

optimizing for these two metrics leads to comparable or better performance than

contrastive learning.

Our main contributions are:

• We propose quantifiable metrics for alignment and uniformity as two measures

of representation quality, with theoretical motivations.

• We prove that the contrastive loss optimizes for alignment and uniformity

asymptotically.

• Empirically, we find strong agreement between both metrics and downstream

task performance.
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• Despite being simple in form, our proposed metrics, when directly optimized

with no other loss, empirically lead to comparable or better performance at

downstream tasks than contrastive learning.

2.2 Related Work

Unsupervised Contrastive Representation Learning has seen remarkable suc-

cess in learning representations for image and sequential data (Logeswaran and Lee,

2018; Wu et al., 2018; Oord et al., 2018; Hénaff et al., 2019; Tian et al., 2020b; Hjelm

et al., 2018; Bachman et al., 2019; Tian et al., 2020b; He et al., 2019; Chen et al.,

2020a). The common motivation behind these work is the InfoMax principle (Linsker,

1988), which we here instantiate as maximizing the mutual information (MI) between

two views (Tian et al., 2020b; Bachman et al., 2019; Wu et al., 2020). However, this

interpretation is known to be inconsistent with the actual behavior in practice, e.g.,

optimizing a tighter bound on MI can lead to worse representations (Tschannen et al.,

2019). What the contrastive loss exactly does remains largely a mystery. Analysis

based on the assumption of latent classes provides nice theoretical insights (Saunshi

et al., 2019), but unfortunately has a rather large gap with empirical practices: the re-

sult that representation quality suffers with a large number of negatives is inconsistent

with empirical observations (Wu et al., 2018; Tian et al., 2020b; He et al., 2019; Chen

et al., 2020a). In this chapter, we analyze and characterize the behavior of contrastive

learning from the perspective of alignment and uniformity properties, and empirically

verify our claims with standard representation learning tasks.

Representation learning on the unit hypersphere. Outside contrastive learn-

ing, many other representation learning approaches also normalize their features to

be on the unit hypersphere. In variational autoencoders, the hyperspherical latent

space has been shown to perform better than the Euclidean space (Xu and Durrett,

2018; Davidson et al., 2018). Directly matching uniformly sampled points on the

unit hypersphere is known to provide good representations (Bojanowski and Joulin,
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2017), agreeing with our intuition that uniformity is a desirable property. Mettes et al.

(2019) optimizes prototype representations on the unit hypersphere for classification.

Hyperspherical face embeddings greatly outperform the unnormalized counterparts

(Parkhi et al., 2015; Liu et al., 2017; Wang et al., 2017; Schroff et al., 2015). Its

empirical success suggests that the unit hypersphere is indeed a nice feature space. In

this work, we formally investigate the interplay between the hypersphere geometry

and the popular contrastive representation learning.

Distributing points on the unit hypersphere. The problem of uniformly dis-

tributing points on the unit hypersphere is a well-studied one. It is often defined as

minimizing the total pairwise potential w.r.t. a certain kernel function (Borodachov

et al., 2019; Landkof, 1972), e.g., the Thomson problem of finding the minimal electro-

static potential energy configuration of electrons (Thomson, 1904), and minimization

of the Riesz 𝑠-potential (Götz and Saff, 2001; Hardin and Saff, 2005; Liu et al., 2018).

The uniformity metric we propose is based on the Gaussian potential, which can be

used to represent a very general class of kernels and is closely related to the univer-

sally optimal point configurations (Borodachov et al., 2019; Cohn and Kumar, 2007).

Additionally, the best-packing problem on hyperspheres (often called the Tammes

problem) is also well studied (Tammes, 1930).

2.3 Preliminaries on Unsupervised Contrastive Rep-

resentation Learning

The popular unsupervised contrastive representation learning method (often referred

to as contrastive learning in this chapter) learns representations from unlabeled data.

It assumes a way to sample positive pairs, representing similar samples that should

have similar representations. Empirically, the positive pairs are often obtained by

taking two independently randomly augmented versions of the same sample, e.g. two

crops of the same image (Wu et al., 2018; Hjelm et al., 2018; Bachman et al., 2019;

He et al., 2019; Chen et al., 2020a).
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Let 𝑝data(·) be the data distribution over R𝑛 and 𝑝pos(·, ·) the distribution of positive

pairs over R𝑛 × R𝑛. Based on empirical practices, we assume the following property.

Assumption 2.3.1. Distributions 𝑝data and 𝑝pos should satisfy

• Symmetry: ∀𝑥, 𝑦, 𝑝pos(𝑥, 𝑦) = 𝑝pos(𝑦, 𝑥).

• Matching marginal: ∀𝑥,
∫︀
𝑝pos(𝑥, 𝑦) d𝑦 = 𝑝data(𝑥).

We consider the following specific and widely popular form of contrastive loss for

training an encoder 𝑓 : R𝑛 → 𝒮𝑚−1, mapping data to ℓ2 normalized feature vectors

of dimension 𝑚. This loss has been shown effective by many recent representation

learning methods (Logeswaran and Lee, 2018; Wu et al., 2018; Tian et al., 2020b; He

et al., 2019; Hjelm et al., 2018; Bachman et al., 2019; Chen et al., 2020a).

ℒcontrastive(𝑓 ; 𝜏,𝑀) ,

E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
− log

𝑒𝑓(𝑥)
T𝑓(𝑦)/𝜏

𝑒𝑓(𝑥)T𝑓(𝑦)/𝜏 +
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖 )T𝑓(𝑦)/𝜏

]︃
,

(2.1)

where 𝜏 > 0 is a scalar temperature hyperparameter, and 𝑀 ∈ Z+ is a fixed number

of negative samples.

The term contrastive loss has also been generally used to refer to various objectives

based on positive and negative samples, e.g., in Siamese networks (Chopra et al., 2005;

Hadsell et al., 2006). In this work, we focus on the specific form in Equation (2.1) that

is widely used in modern unsupervised contrastive representation learning literature.

Necessity of normalization. Without the norm constraint, the softmax distribu-

tion can be made arbitrarily sharp by simply scaling all the features. Wang et al.

(2017) provided an analysis on this effect and argued for the necessity of normalization

when using feature vector dot products in a cross entropy loss, as is in Eqn. (2.1).

Experimentally, Chen et al. (2020a) also showed that normalizing outputs leads to

superior representations.
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The InfoMax principle. Many empirical works are motivated by the InfoMax

principle of maximizing 𝐼(𝑓(𝑥); 𝑓(𝑦)) for (𝑥, 𝑦) ∼ 𝑝pos (Tian et al., 2020b; Bachman

et al., 2019; Wu et al., 2020). Usually they interpret ℒcontrastive in Eqn. (2.1) as a lower

bound of 𝐼(𝑓(𝑥); 𝑓(𝑦)) (Oord et al., 2018; Hjelm et al., 2018; Bachman et al., 2019;

Tian et al., 2020b). However, this interpretation is known to have issues in practice,

e.g., maximizing a tighter bound often leads to worse downstream task performance

(Tschannen et al., 2019). Therefore, instead of viewing it as a bound, we investigate

the exact behavior of directly optimizing ℒcontrastive in the following sections.

2.4 Feature Distribution on the Hypersphere

The contrastive loss encourages learned feature representation for positive pairs

to be similar, while pushing features from the randomly sampled negative pairs

apart. Conventional wisdom says that representations should extract the most shared

information between positive pairs and remain invariant to other noise factors (Linsker,

1988; Tian et al., 2020b; Wu et al., 2020; Bachman et al., 2019). Therefore, the loss

should prefer two following properties:

• Alignment : two samples forming a positive pair should be mapped to nearby

features, and thus be (mostly) invariant to unneeded noise factors.

• Uniformity : feature vectors should be roughly uniformly distributed on the unit

hypersphere 𝒮𝑚−1, preserving as much information of the data as possible.

To empirically verify this, we visualize CIFAR-10 (Torralba et al., 2008; Krizhevsky

et al., 2009) representations on 𝒮1 (𝑚 = 2) obtained via three different methods:

• Random initialization.

• Supervised predictive learning: An encoder and a linear classifier are jointly

trained from scratch with cross entropy loss on supervised labels.

• Unsupervised contrastive learning: An encoder is trained w.r.t. ℒcontrastive with

𝜏 = 0.5 and 𝑀 = 256.
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(a) Random Initialization. Linear classification validation accuracy: 12.71%.
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(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.
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(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Figure 2-3: Representations of CIFAR-10 validation set on 𝒮1. Alignment analysis: We
show distribution of distance between features of positive pairs (two random augmentations).
Uniformity analysis: We plot feature distributions with Gaussian kernel density estimation
(KDE) in R2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(𝑦, 𝑥) for each point
(𝑥, 𝑦) ∈ 𝒮1). Four rightmost plots visualize feature distributions of selected specific classes.
Representation from contrastive learning is both aligned (having low positive pair feature
distances) and uniform (evenly distributed on 𝒮1).

All three encoders share the same AlexNet based architecture (Krizhevsky et al., 2012),

modified to map input images to 2-dimensional vectors in 𝒮1. Both predictive and

contrastive learning use standard data augmentations to augment the dataset and

sample positive pairs.

Figure 2-3 summarizes the resulting distributions of validation set features. Indeed,

features from unsupervised contrastive learning (bottom in Figure 2-3) exhibit the

most uniform distribution, and are closely clustered for positive pairs.

The form of the contrastive loss in Eqn. (2.1) also suggests this. We present

informal arguments below, followed by more formal treatment in Section 2.4.2. From
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Figure 2-4: Average pairwise 𝐺2 potential as a measure of uniformity. Each plot shows 10000
points distributed on 𝒮1, obtained via either applying an encoder on CIFAR-10 validation
set (same as those in Figure 2-3) or sampling from a distribution on 𝒮1, as described in plot
titles. We show the points with Gaussian KDE and the angles with vMF KDE.

the symmetry of 𝑝, we can derive

ℒcontrastive(𝑓 ; 𝜏,𝑀) = E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log

(︃
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
∑︁
𝑖

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃]︃
.

Because the
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖 )T𝑓(𝑥)/𝜏 term is always positive and bounded below, the loss favors

smaller E
[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
, i.e., having more aligned positive pair features. Suppose

the encoder is perfectly aligned, i.e., P [𝑓(𝑥) = 𝑓(𝑦)] = 1, then minimizing the loss is

equivalent to optimizing

E
𝑥∼𝑝data

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
log

(︃
𝑒1/𝜏 +

∑︁
𝑖

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃]︃
,

which is akin to maximizing pairwise distances with a LogSumExp transformation.

Intuitively, pushing all features away from each other should indeed cause them to be

roughly uniformly distributed.

2.4.1 Quantifying Alignment and Uniformity

For further analysis, we need a way to measure alignment and uniformity. We propose

the following two metrics (losses).
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Alignment

The alignment loss is straightforwardly defined with the expected distance between

positive pairs:

ℒalign(𝑓 ;𝛼) , E
(𝑥,𝑦)∼𝑝pos

[‖𝑓(𝑥)− 𝑓(𝑦)‖𝛼2 ] , 𝛼 > 0.

Uniformity

We want the uniformity metric to be both asymptotically correct (i.e., the distribution

optimizing this metric should converge to uniform distribution) and empirically

reasonable with finite number of points. To this end, we consider the Gaussian potential

kernel (also known as the Radial Basis Function (RBF) kernel) 𝐺𝑡 : 𝒮𝑑 × 𝒮𝑑 → R+

(Cohn and Kumar, 2007; Borodachov et al., 2019):

𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡, 𝑡 > 0,

and define the uniformity loss as the logarithm of the average pairwise Gaussian

potential:

ℒuniform(𝑓 ; 𝑡) , log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[𝐺𝑡(𝑢, 𝑣)]

= log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝑒−𝑡‖𝑓(𝑥)−𝑓(𝑦)‖

2
2

]︁
, 𝑡 > 0.

The average pairwise Gaussian potential is nicely tied with the uniform distribution

on the unit hypersphere.

Definition 2.4.1 (Uniform distribution on 𝒮𝑑). 𝜎𝑑 denotes the normalized surface

area measure on 𝒮𝑑.

First, we show that the uniform distribution is the unique distribution that minimize

the expected pairwise potential.

Proposition 2.4.2. For ℳ(𝒮𝑑) the set of Borel probability measures on 𝒮𝑑, 𝜎𝑑 is
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the unique solution of

min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝑢

∫︁
𝑣

𝐺𝑡(𝑢, 𝑣) d𝜇 d𝜇.

Proof. See Appendix A.1.1.

In addition, as number of points goes to infinity, distributions of points minimizing

the average pairwise potential converge weak* to the uniform distribution. Recall the

definition of the weak* convergence of measures.

Definition 2.4.3 (Weak* convergence of measures). A sequence of Borel measures

{𝜇𝑛}∞𝑛=1 in R𝑝 converges weak* to a Borel measure 𝜇 if for all continuous function

𝑓 : R𝑝 → R, we have

lim
𝑛→∞

∫︁
𝑓(𝑥) d𝜇𝑛(𝑥) =

∫︁
𝑓(𝑥) d𝜇(𝑥).

Proposition 2.4.4. For each 𝑁 > 0, the 𝑁 point minimizer of the average pairwise

potential is

u*
𝑁 = argmin

𝑢1,𝑢2,...,𝑢𝑁∈𝒮𝑑

∑︁
1≤𝑖<𝑗≤𝑁

𝐺𝑡(𝑢𝑖, 𝑢𝑗).

The normalized counting measures associated with the {u*
𝑁}∞𝑁=1 sequence converge

weak* to 𝜎𝑑.

Proof. See Appendix A.1.1.

Designing an objective minimized by the uniform distribution is in fact nontrivial.

For instance, average pairwise dot products or Euclidean distances is simply optimized

by any distribution that has zero mean. Among kernels that achieve uniformity at

optima, the Gaussian kernel is special in that it is closely related to the universally

optimal point configurations and can also be used to represent a general class of

other kernels, including the Riesz 𝑠-potentials. We refer readers to Borodachov et al.

(2019) and Cohn and Kumar (2007) for in-depth discussions on these topics. Moreover,

as we show below, ℒuniform, defined with the Gaussian kernel, has close connections

with ℒcontrastive.
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Empirically, we evaluate the average pairwise potential of various finite point

collections on 𝒮1 in Figure 2-4. The values nicely align with our intuitive understanding

of uniformity.

We further discuss properties of ℒuniform and characterize its optimal value and

range in Appendix A.1.1.

2.4.2 Limiting Behavior of Contrastive Learning

In this section, we formalize the intuition that contrastive learning optimizes alignment

and uniformity, and characterize its asymptotic behavior. We consider optimization

problems over all measurable encoder functions from the 𝑝data measure in R𝑛 to the

Borel space 𝒮𝑚−1.

We first define the notion of optimal encoders for each of these two metrics.

Definition 2.4.5 (Perfect Alignment). We say an encoder 𝑓 is perfectly aligned if

𝑓(𝑥) = 𝑓(𝑦) a.s. over (𝑥, 𝑦) ∼ 𝑝pos.

Definition 2.4.6 (Perfect Uniformity). We say an encoder 𝑓 is perfectly uniform if

the distribution of 𝑓(𝑥) for 𝑥 ∼ 𝑝data is the uniform distribution 𝜎𝑚−1 on 𝒮𝑚−1.

Realizability of perfect uniformity. We note that it is not always possible to

achieve perfect uniformity, e.g., when the data manifold in R𝑛 is lower dimensional

than the feature space 𝒮𝑚−1. Moreover, in the case that 𝑝data and 𝑝pos are formed from

sampling augmented samples from a finite dataset, there cannot be an encoder that is

both perfectly aligned and perfectly uniform, because perfect alignment implies that

all augmentations from a single element have the same feature vector. Nonetheless,

perfectly uniform encoder functions do exist under the conditions that 𝑛 ≥ 𝑚− 1 and

𝑝data has bounded density.

We analyze the asymptotics with infinite negative samples. Existing empirical

work has established that larger number of negative samples consistently leads to

better downstream task performances (Wu et al., 2018; Tian et al., 2020b; He et al.,

2019; Chen et al., 2020a), and often uses very large values (e.g., 𝑀 = 65536 in He et al.
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(2019)). The following theorem nicely confirms that optimizing w.r.t. the limiting loss

indeed requires both alignment and uniformity.

Theorem 2.4.7 (Asymptotics of ℒcontrastive). For fixed 𝜏 > 0, as the number of

negative samples 𝑀 → ∞, the (normalized) contrastive loss converges to

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀)− log𝑀 =

− 1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
.

(2.2)

We have the following results:

1. The first term is minimized iff 𝑓 is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

3. For the convergence in Equation (2.2), the absolute deviation from the limit

decays in 𝒪(𝑀−1/2).

Proof. See Appendix A.1.2.

Relation with ℒuniform. The proof of Theorem 2.4.7 in the Appendix A.1.2

connects the asymptotic ℒcontrastive form with minimizing average pairwise Gaussian

potential, i.e., minimizing ℒuniform. Compared with the second term of Equation (2.2),

ℒuniform essentially pushes the log outside the outer expectation, without changing the

minimizer (perfectly uniform encoders). However, due to its pairwise nature, ℒuniform

is much simpler in form and avoids the computationally expensive softmax operation

in ℒcontrastive (Goodman, 2001; Bengio et al.; Gutmann and Hyvärinen, 2010; Grave

et al., 2017; Chen et al., 2018).

Relation with feature distribution entropy estimation. When 𝑝data is uniform

over finite samples {𝑥1, 𝑥2, . . . , 𝑥𝑁} (e.g., a collected dataset), the second term in

Equation (2.2) can be alternatively viewed as a resubstitution entropy estimator of
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𝑓(𝑥) (Ahmad and Lin, 1976), where 𝑥 follows the underlying distribution 𝑝nature that

generates {𝑥𝑖}𝑁𝑖=1, via a von Mises-Fisher (vMF) kernel density estimation (KDE):

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂

=
1

𝑁

𝑁∑︁
𝑖=1

log

(︃
1

𝑁

𝑁∑︁
𝑗=1

𝑒𝑓(𝑥𝑖)
T𝑓(𝑥𝑗)/𝜏

)︃

=
1

𝑁

𝑁∑︁
𝑖=1

log 𝑝vMF-KDE(𝑓(𝑥𝑖)) + log𝑍vMF

, −�̂�(𝑓(𝑥)) + log𝑍vMF, 𝑥 ∼ 𝑝nature

, −𝐼(𝑥; 𝑓(𝑥)) + log𝑍vMF, 𝑥 ∼ 𝑝nature,

where

• 𝑝vMF-KDE is the KDE based on samples {𝑓(𝑥𝑗)}𝑁𝑗=1 using a vMF kernel with

𝜅 = 𝜏−1,

• 𝑍vMF is the normalization constant for vMF distribution with 𝜅 = 𝜏−1,

• �̂� denotes the resubstitution entropy estimator,

• 𝐼 denotes the mutual information estimator based on �̂�, since 𝑓 is a deterministic

function.

Relation with the InfoMax principle. Many empirical works are motivated

by the InfoMax principle, i.e., maximizing 𝐼(𝑓(𝑥); 𝑓(𝑦)) for (𝑥, 𝑦) ∼ 𝑝pos. However,

the interpretation of ℒcontrastive as a lower bound of 𝐼(𝑓(𝑥); 𝑓(𝑦)) is known to be

inconsistent with its actual behavior in practice (Tschannen et al., 2019). Our

results instead analyze the properties of ℒcontrastive itself. Considering the identity

𝐼(𝑓(𝑥); 𝑓(𝑦)) = 𝐻(𝑓(𝑥)) −𝐻(𝑓(𝑥) | 𝑓(𝑦)), we can see that while uniformity indeed

favors large 𝐻(𝑓(𝑥)), alignment is stronger than merely desiring small 𝐻(𝑓(𝑥) | 𝑓(𝑦)).

In particular, both Theorem 2.4.7 and the above connection with maximizing an

entropy estimator provide alternative interpretations and motivations that ℒcontrastive

optimizes for aligned and information-preserving encoders.

Finally, even for the case where only a single negative sample is used (i.e., 𝑀 = 1),

we can still prove a weaker result, which we describe in details in the Appendix A.1.2.
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(a) 304 STL-10 encoders are evaluated with linear classification on
output features and 5-nearest neighbor (5-NN) on fc7 activations.
Higher accuracy (blue color) is better.
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(b) 64 NYU-Depth-V2 encoders
are evaluated with CNN depth
regressors on conv5 activations.
Lower MSE (blue color) is better.

Figure 2-5: Metrics and performance of STL-10 and NYU-Depth-V2 experiments. Each
point represents a trained encoder, with its 𝑥- and 𝑦-coordinates showing ℒalign and ℒuniform

metrics and color showing the performance on validation set. Blue is better for both tasks.
Encoders with low ℒalign and ℒuniform are consistently the better performing ones (lower left
corners).

# bsz : batch size (number of positive pairs)
# d : latent dim
# x : Tensor, shape=[bsz, d]
# latents for one side of positive pairs
# y : Tensor, shape=[bsz, d]
# latents for the other side of positive pairs
# lam : hyperparameter balancing the two losses

def lalign(x, y, alpha=2):
return (x - y).norm(dim=1).pow(alpha).mean()

def lunif(x, t=2):
sq_pdist = torch.pdist(x, p=2).pow(2)
return sq_pdist.mul(-t).exp().mean().log()

loss = lalign(x, y) + lam * (lunif(x) + lunif(y)) / 2

Figure 2-6: PyTorch implementation of ℒalign and ℒuniform.

2.5 Experiments

In this section, we empirically verify the hypothesis that alignment and uniformity

are desired properties for representations. Recall that our two metrics are

ℒalign(𝑓 ;𝛼) , E(𝑥,𝑦)∼𝑝pos [‖𝑓(𝑥)− 𝑓(𝑦)‖𝛼2 ]

ℒuniform(𝑓 ; 𝑡) , log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝑒−𝑡‖𝑓(𝑥)−𝑓(𝑦)‖

2
2

]︁
.

We conduct extensive experiments with convolutional neural network (CNN) and

recurrent neural network (RNN) based encoders on four popular representation learning
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benchmarks with distinct types of downstream tasks:

• STL-10 (Coates et al., 2011) classification on AlexNet-based encoder outputs

or intermediate activations with a linear or 𝑘-nearest neighbor (𝑘-NN) classifier.

• NYU-Depth-V2 (Nathan Silberman and Fergus, 2012) depth prediction on

CNN encoder intermediate activations after convolution layers.

• ImageNet and ImageNet-100 (random 100-class subset of ImageNet) clas-

sification on CNN encoder penultimate layer activations with a linear classifier.

• BookCorpus (Zhu et al., 2015) RNN sentence encoder outputs used for Moview

Review Sentence Polarity (MR) (Pang and Lee, 2005) and Customer Product

Review Sentiment (CR) (Wang and Manning, 2012) binary classification tasks

with logisitc classifiers.

For image datasets, we follow the standard practice and choose positive pairs as

two independent augmentations of the same image. For BookCorpus, positive pairs

are chosen as neighboring sentences, following Quick-Thought Vectors (Logeswaran

and Lee, 2018).

We perform majority of our analysis on STL-10 and NYU-Depth-V2 encoders,

where we calculate ℒcontrastive with negatives being other samples within the minibatch

following the standard practice (Hjelm et al., 2018; Bachman et al., 2019; Tian et al.,

2020b; Chen et al., 2020a), and ℒuniform as the logarithm of average pairwise feature

potentials also within the minibatch. Due to their simple forms, these two losses can

be implemented in PyTorch (Paszke et al., 2019) with less than 10 lines of code, as

shown in Figure 2-6.

To investigate alignment and uniformity properties on recent contrastive learning

methods and larger datasets, we also analyze ImageNet and ImageNet-100 encoders

trained with Momentum Contrast (MoCo) (He et al., 2019; Chen et al., 2020b), and

BookCorpus encoders trained with Quick-Thought Vectors (Logeswaran and Lee,

2018), with these methods modified to also allow ℒalign and ℒuniform.
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Loss Formula
Validation Set Accuracy ↑

Output + Linear Output + 5-NN fc7 + Linear fc7 + 5-NN

Best ℒcontrastive only ℒcontrastive(𝜏=0.19) 80.46% 78.75% 83.89% 76.33%

Best ℒalign and ℒuniform only 0.98 · ℒalign(𝛼=2) + 0.96 · ℒuniform(𝑡=2) 81.15% 78.89% 84.43% 76.78%

Best among all encoders ℒcontrastive(𝜏=0.5) + ℒuniform(𝑡=2) 81.06% 79.05% 84.14% 76.48%

Table 2.1: STL-10 encoder evaluations. Numbers show linear and 5-nearest neighbor (5-NN)
classification accuracies on the validation set. The best result is picked by encoder outputs
linear classifier accuracy from a 5-fold training set cross validation, among all 150 encoders
trained from scratch with 128-dimensional output and 768 batch size.

Loss Formula
Validation Set MSE ↓

conv5 conv4

Best ℒcontrastive only 0.5 · ℒcontrastive(𝜏=0.1) 0.7024 0.7575

Best ℒalign and ℒuniform only 0.75 · ℒalign(𝛼=2) + 0.5 · ℒuniform(𝑡=2) 0.7014 0.7592

Best among all encoders 0.75 · ℒalign(𝛼=2) + 0.5 · ℒuniform(𝑡=2) 0.7014 0.7592

Table 2.2: NYU-Depth-V2 encoder evaluations. Numbers show depth prediction mean
squared error (MSE) on the validation set. The best result is picked based on conv5 layer
MSE from a 5-fold training set cross validation, among all 64 encoders trained from scratch
with 128-dimensional output and 128 batch size.

We optimize a total of 304 STL-10 encoders, 64 NYU-Depth-V2 encoders,

45 ImageNet-100 encoders, and 108 BookCorpus encoders without supervision.

The encoders are optimized w.r.t. weighted combinations of ℒcontrastive, ℒalign, and/or

ℒuniform, with varying

• (possibly zero) weights on the three losses,

• temperature 𝜏 for ℒcontrastive,

• 𝛼 ∈ {1, 2} for ℒalign,

• 𝑡 ∈ {1, 2, . . . , 8} for ℒuniform,

• batch size (affecting the number of (negative) pairs for ℒcontrastive and ℒuniform),

• embedding dimension,

• number of training epochs and learning rate,

• initialization (from scratch vs. a pretrained encoder).

See Appendix A.2 for more experiment details and the exact configurations used.

49



0.0
align only

0.2 0.4 0.6 0.8 1.0
uniform only

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Optimize (1 ) align + uniform

uniform(t = 2) (exp)
align( = 2)

Val accuracy

Figure 2-7: Effect of optimizing different weighted combinations of ℒalign(𝛼=2) and
ℒuniform(𝑡=2) for STL-10. For each encoder, we show the ℒalign and ℒuniform metrics, and
validation accuracy of a linear classifier trained on encoder outputs. ℒuniform is exponentiated
for plotting purposes.

ℒalign and ℒuniform strongly agree with downstream task performance. For

each encoder, we measure the downstream task performance, and the ℒalign, ℒuniform

metrics on the validation set. Figure 2-5 visualizes the trends between both metrics

and representation quality. We observe that the two metrics strongly agrees the

representation quality overall. In particular, the best performing encoders are exactly

the ones with low ℒalign and ℒuniform, i.e., the lower left corners in Figure 2-5.

Directly optimizing only ℒalign and ℒuniform can lead to better representa-

tions. As shown in Tables 2.1 and 2.2, encoders trained with only ℒalign and ℒuniform

consistently outperform their ℒcontrastive-trained counterparts, for both tasks. Theo-

retically, Theorem 2.4.7 showed that ℒcontrastive optimizes alignment and uniformity

asymptotically with infinite negative samples. This empirical performance gap suggests

that directly optimizing these properties can be superior in practice, when we can

only have finite negatives.

Both alignment and uniformity are necessary for a good representation.

Figure 2-7 shows how the final encoder changes in response to optimizing differently

weighted combinations of ℒalign and ℒuniform on STL-10. The trade-off between the

ℒalign and ℒuniform indicates that perfect alignment and perfect uniformity are likely

hard to simultaneously achieve in practice. However, the inverted-U-shaped accuracy
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Figure 2-8: Finetuning trajectories from a STL-10 encoder trained with ℒcontrastive using
a suboptimal temperature 𝜏 = 2.5. Finetuning objectives are weighted combinations of
ℒalign(𝛼=2) and ℒuniform(𝑡=2). For each intermediate checkpoint, we measure ℒalign and
ℒuniform metrics, as well as validation accuracy of a linear classifier trained from scratch on
the encoder outputs. ℒuniform is exponentiated for plotting purpose. Left and middle: Per-
formance degrades if only one of alignment and uniformity is optimized. Right: Performance
improves when both are optimized.

curve confirms that both properties are indeed necessary for a good encoder. When

ℒalign is weighted much higher than ℒuniform, degenerate solution occurs and all inputs

are mapped to the same feature vector (expℒuniform = 1). However, as long as the ratio

between two weights is not too large (e.g., < 4), we observe that the representation

quality remains relatively good and insensitive to the exact weight choices.

ℒalign and ℒuniform causally affect downstream task performance. We take an

encoder trained with ℒcontrastive using a suboptimal temperature 𝜏 = 2.5, and finetune

it according to ℒalign and/or ℒuniform. Figure 2-8 visualizes the finetuning trajectories.

When only one of alignment and uniformity is optimized, the corresponding metric

improves, but both the other metric and performance degrade. However, when both

properties are optimized, the representation quality steadily increases. These trends

confirm the causal effect of alignment and uniformity on the representation quality,

and suggest that directly optimizing them can be a reasonable choice.

Alignment and uniformity also matter in other contrastive representation

learning variants. MoCo (He et al., 2019) and Quick-Thought Vectors (Logeswaran

and Lee, 2018) are contrastive representation learning variants that have nontrivial

differences with directly optimizing ℒcontrastive in Equation (2.1). MoCo introduces a

memory queue and a momentum encoder. Quick-Thought Vectors uses two different
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(b) 108 BookCorpus encoders are trained with Quick-Thought-
Vectors-based methods, and evaluated with logistic binary classifi-
cation on Movie Review Sentence Polarity and Customer Product
Review Sentiment tasks.

Figure 2-9: Metrics and performance of ImageNet-100 and BookCorpus experiments.
Each point represents a trained encoder, with its 𝑥- and 𝑦-coordinates showing ℒalign and
ℒuniform metrics and color showing the validation accuracy. Blue is better. Encoders with
low ℒalign and ℒuniform consistently perform well (lower left corners), even though the training
methods (based on MoCo and Quick-Thought Vectors) are different from directly optimizing
the contrastive loss in Equation (2.1).

encoders to encode each sentence in a positive pair, only normalizes encoder outputs

during evaluation, and does not use random sampling to obtain minibatches. After

modifying them to also allow ℒalign and ℒuniform, we train these methods on ImageNet-

100 and BookCorpus, respectively. Figure 2-9 shows that ℒalign and ℒuniform metrics

are still correlated with the downstream task performances. Tables 2.3 and 2.4

show that directly optimizing them also leads to comparable or better representation

quality. Table 2.5 also shows improvements on full ImageNet when we use ℒalign

and ℒuniform to train MoCo v2 (Chen et al., 2020b) (an improved version of MoCo).

These results suggest that alignment and uniformity are indeed desirable properties

for representations, for both image and text modalities, and are likely connected with

general contrastive representation learning methods.

2.6 Discussion

Alignment and uniformity are often alluded to as motivations for representation

learning methods (see Figure 2-1). However, a thorough understanding of these

properties is lacking in the literature.
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Loss Formula
Validation Set Accuracy ↑

top1 top5

Best ℒcontrastive only ℒcontrastive(𝜏=0.07) 72.80% 91.64%

Best ℒalign and ℒuniform only 3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 74.60% 92.74%

Best among all encoders 3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 74.60% 92.74%

Table 2.3: ImageNet-100 encoder evaluations. Numbers show validation set accuracies of
linear classifiers trained on encoder penultimate layer activations. The encoders are trained
using MoCo-based methods. The best result is picked based on top1 accuracy from a 3-fold
training set cross validation, among all 45 encoders trained from scratch with 128-dimensional
output and 128 batch size.

MR Classification CR Classification

Loss Formula Val. Set
Accuracy ↑ Loss Formula Val. Set

Accuracy ↑

Best ℒcontrastive only ℒcontrastive(𝜏=0.075) 77.51% ℒcontrastive(𝜏=0.05) 83.86%

Best ℒalign and ℒuniform only 0.9 · ℒalign(𝛼=2) + 0.1 · ℒuniform(𝑡=5) 73.76% 0.9 · ℒalign(𝛼=2) + 0.1 · ℒuniform(𝑡=5) 80.95%

Best among all encoders ℒcontrastive(𝜏=0.075) 77.51% ℒcontrastive(𝜏=0.05) 83.86%

Table 2.4: BookCorpus encoder evaluations. Numbers show Movie Review Sentence
Polarity (MR) and Customer Product Sentiment (CR) validation set classification accuracies
of logistic classifiers fit on encoder outputs. The encoders are trained using Quick-Thought-
Vectors-based methods. The best result is picked based on accuracy from a 5-fold training set
cross validation, individually for MR and CR, among all 108 encoders trained from scratch
with 1200-dimensional output and 400 batch size.

Loss Formula Validation Set top1 Accuracy ↑

ℒcontrastive(𝜏=0.2)

(MoCo v2 Chen et al. (2020b)) 67.5%± 0.1%

3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 67.69%

Table 2.5: ImageNet encoder evaluations with MoCo v2, and its variant with ℒalign and
ℒuniform. MoCo v2 results are from the MoCo v2 official implementation (Chen et al., 2020c),
with mean and standard deviation across 5 runs. Both settings use 200 epochs of unsupervised
training.
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Are they in fact related to the representation learning methods? Do they actually

agree with the representation quality (measured by downstream task performance)?

In this work, we have presented a detailed investigation on the relation between

these properties and the popular paradigm of contrastive representation learning.

Through theoretical analysis and extensive experiments, we are able to relate the

contrastive loss with the alignment and uniformity properties, and confirm their

strong connection with downstream task performances. Remarkably, we have revealed

that directly optimizing our proposed metrics often leads to representations of better

quality.

Below we summarize several suggestions for future work.

Niceness of the unit hypersphere. Our analysis was based on the empirical

observation that representations are often ℓ2 normalized. Existing works have moti-

vated this choice from a manifold mapping perspective (Liu et al., 2017; Davidson

et al., 2018) and computation stability (Xu and Durrett, 2018; Wang et al., 2017).

However, to our best knowledge, the question of why the unit hypersphere is a nice

feature space is not yet rigorously answered. One possible direction is to formalize the

intuition that connected sets with smooth boundaries are nearly linearly separable in

the hyperspherical geometry (see Figure 2-2), since linear separability is one of the

most widely used criteria for representation quality and is related to the notion of

disentanglement (Higgins et al., 2018).

Beyond contrastive learning. Our analysis focused on the relationship between

contrastive learning and the alignment and uniformity properties on the unit hyper-

sphere. However, the ubiquitous presence of ℓ2 normalization in the representation

learning literature suggests that the connection may be more general. In fact, several

existing empirical methods are directly related to uniformity on the hypersphere (Bo-

janowski and Joulin, 2017; Davidson et al., 2018; Xu and Durrett, 2018). We believe

that relating a broader class of representations to uniformity and/or alignment on the

hypersphere will provide novel insights and lead to better empirical algorithms.
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Part II

Decision-Making as Representation

Learning
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Chapter 3

Learning Representations of

Quasimetric Distances

Our world is full of asymmetries. Gravity and wind can make reaching a place easier

than coming back. Social artifacts such as genealogy charts and citation graphs are

inherently directed. In reinforcement learning and control, optimal goal-reaching

strategies are rarely reversible (symmetrical). Distance functions supported on these

asymmetrical structures are called quasimetrics. Despite their common appearance,

little research has been done on the learning of quasimetrics.

Our theoretical analysis reveals that a common class of learning algorithms, includ-

ing unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric

consistent with training data. In contrast, our proposed Poisson Quasimetric Embed-

ding (PQE) is the first quasimetric learning formulation that both is learnable with

gradient-based optimization and enjoys strong performance guarantees. Experiments

on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness

over many common baselines.

This chapter is based on published works:

1. On The Learning and Learnability of Quasimetrics with co-author Phillip Isola

at the International Conference on Learning Representations (ICLR) 2022 (Wang

and Isola, 2022b);
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2. Improved Representation of Asymmetrical Distances with Interval Quasimetric

Embeddings with co-author Phillip Isola at the Workshop on Symmetry and

Geometry in Neural Representations at NeurIPS 2022 (Wang and Isola, 2022a).

3.1 Introduction

Learned symmetrical metrics have been proven useful for innumerable tasks including

dimensionality reduction (Tenenbaum et al., 2000), clustering (Xing et al., 2002),

classification (Weinberger et al., 2006; Hoffer and Ailon, 2015), and information

retrieval (Wang et al., 2014). However, the real world is largely asymmetrical, and

symmetrical metrics can only capture a small fraction of it.

Generalizing metrics, quasimetrics (Definition 3.2.1) allow for asymmetrical dis-

tances and can be found in a wide range of domains (see Figure 3-1). Ubiquitous

physical forces, such as gravity and wind, as well as human-defined rules, such as

one-way roads, make the traveling time between places a quasimetric. Furthermore,

many of our social artifacts are directed graphs— genealogy charts, follow-relation

on Twitter (Leskovec and Krevl, 2014), citation graphs (Price, 2011), hyperlinks over

the Internet, etc. Shortest paths on these graphs naturally induce quasimetric spaces.

In fact, we can generalize to Markov Decision Processes (MDPs) and observe that

optimal goal-reaching plan costs (i.e., universal value/Q-functions (Schaul et al., 2015;

Sutton et al., 2011)) always form a quasimetric (Bertsekas and Tsitsiklis, 1991; Tian

et al., 2020a). Moving onto more abstract structures, quasimetrics can also be found

as expected hitting times in Markov chains, and as conditional Shannon entropy

𝐻(· | ·) in information theory. (See the appendix for proofs and discussions of these

quasimetrics.)

In this work, we study the task of quasimetric learning. Given a sampled training

set of pairs and their quasimetric distances, we ask: how well can we learn a quasimetric

that fits the training data? We define quasimetric learning in analogy to metric learning:

whereas metric learning is the problem of learning a metric function, quasimetric

learning is the problem of learning a quasimetric function. This may involve searching

58



 
  Quasimetrics     Metrics

000

001

010

011

100 110

101 111 Hamming  
Distance

Conditional Entropy 
H( ⋅ | ⋅ )

Shortest Paths on 
Directed Graphs

Euclidean  
Distance

Any Normed Space 
∥x − y∥

Divergences 
(e.g., )DKL

Unconstrained  
Functions

<latexit sha1_base64="IC9ho7m4i1i+m3nG9pyN9d0Mn8k="></latexit>

Gridworld with One-way Doors

Time to Target Location  
Under Gravity

Optimal Goal-Reaching 
Plan Costs in MDPs

General Kernels 
(and Inner Products)

Figure 3-1: Examples of quasimetric spaces. The car drawing is borrowed from Sutton and
Barto (2018).

over a hypothesis space constrained to only include quasimetric functions (which is

what our method does) or it could involve searching for approximately quasimetric

functions (we compare to and analyze such approaches). Successful formulations

have many potential applications, such as structural priors in reinforcement learning

(Schaul et al., 2015; Tian et al., 2020a), graph learning (Rizi et al., 2018) and causal

relation learning (Balashankar and Subramanian, 2021).

Towards this goal, our contributions are

• We study the quasimetric learning task with two goals: (1) fitting training data

well and (2) respecting quasimetric constraints (Section 3.3);

• We prove that a large family of algorithms, including unconstrained networks

trained in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018), fail

at this task, while a learned embedding into a latent quasimetric space can

potentially succeed (Section 3.4);

• We propose Poisson Quasimetric Embeddings (PQEs), the first quasimetric

embedding formulation learnable with gradient-based optimization that also

enjoys strong theoretical guarantees on approximating arbitrary quasimetrics

(Section 3.5);

• Our experiments complement the theory and demonstrate the benefits of PQEs

on random graphs, social graphs and offline Q-learning (Section 3.5.5).
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3.2 Preliminaries on Quasimetrics and Poisson Pro-

cesses

Quasimetric space is a generalization of metric space where all requirements of

metrics are satisfied, except that the distances can be asymmetrical.

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (𝒳 , 𝑑), where

𝒳 is a set of points and 𝑑 : 𝒳 ×𝒳 → [0,∞] is the quasimetric, satisfying the following

conditions:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 ⇐⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Being asymmetric, quasimetrics are often thought of as (shortest-path) distances

of some (possibly infinite) weighted directed graph. A natural way to quantify the

complexity of a quasimetric is to consider that of its underlying graph. Quasimetric

treewidth is an instantiation of this idea.

Definition 3.2.2 (Treewidth of Quasimetric Spaces (Mémoli et al., 2018)). Consider

a quasimetric space 𝑀 as shortest-path distances on a positively-weighted directed

graph. Treewidth of 𝑀 is the minimum over all such graphs’ treewidths.

Poisson processes are commonly used to model events (or points) randomly

occurring across a set 𝐴 (Kingman, 2005) , e.g., raindrops hitting a windshield, photons

captured by a camera. The number of such events within a subset of 𝐴 is modeled as

a Poisson distribution, whose mean is given by a measure 𝜇 of 𝐴 that determines how

“frequently the events happen at each location”.

Definition 3.2.3 (Poisson Process). For nonatomic measure 𝜇 on set 𝐴, a Poisson

process on 𝐴 with mean measure 𝜇 is a random countable subset 𝑃 ⊂ 𝐴 (i.e., the

random events / points) such that

• for any disjoint measurable subsets 𝐴1, . . . , 𝐴𝑛 of 𝐴, the random variables

𝑁(𝐴1), . . . , 𝑁(𝐴𝑛) are independent, where 𝑁(𝐵) , #{𝑃 ∩𝐵} is the number
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of points of 𝑃 in 𝐵, and

• 𝑁(𝐵) has the Poisson distribution with mean 𝜇(𝐵), denoted as Pois(𝜇(𝐵)).

Fact 3.2.4 (Differentiability of P [𝑁(𝐴1) ≤ 𝑁(𝐴2)]). For two measurable subsets

𝐴1, 𝐴2,

P [𝑁(𝐴1) ≤ 𝑁(𝐴2)] = P
[︀
Pois(𝜇(𝐴1 ∖ 𝐴2)) ≤ Pois(𝜇(𝐴2 ∖ 𝐴1))⏟  ⏞  

two independent Poissons

]︀
. (3.1)

Furthermore, for independent 𝑋 ∼ Pois(𝜇1), 𝑌 ∼ Pois(𝜇2), the probability P [𝑋 ≤ 𝑌 ]

is differentiable w.r.t. 𝜇1 and 𝜇2. In the special case where 𝜇1 or 𝜇2 is zero, we can

simply compute

P [𝑋 ≤ 𝑌 ] =

⎧⎪⎨⎪⎩P [0 ≤ 𝑌 ] = 1 if 𝜇1 = 0

P [𝑋 ≤ 0] = P [𝑋 = 0] = 𝑒−𝜇1 if 𝜇2 = 0
(Pois(0) is always 0)

= exp
(︀
−(𝜇1 − 𝜇2)

+
)︀
, (3.2)

where 𝑥+ , max(0, 𝑥). For general 𝜇1, 𝜇2, this probability and its gradients can be

obtained via a connection to noncentral 𝜒2 distribution (Johnson, 1959). We derive

the formulas in the appendix.

Therefore, if 𝐴1 and 𝐴2 are parametrized by some 𝜃 such that 𝜇(𝐴1 ∖ 𝐴2) and

𝜇(𝐴2 ∖ 𝐴1) are differentiable w.r.t. 𝜃, so is P [𝑁(𝐴1) ≤ 𝑁(𝐴2)].

3.3 Quasimetric Learning

Consider a quasimetric space (𝒳 , 𝑑). The quasimetric learning task aims to infer

a quasimetric from observing a training set {(𝑥𝑖, 𝑦𝑖, 𝑑(𝑥𝑖, 𝑦𝑖))}𝑖 ⊂ 𝒳 × 𝒳 × [0,∞].

Naturally, our goals for a learned predictor 𝑑 : 𝒳 × 𝒳 → R are: respecting the quasi-

metric constraints and fitting training distances.

Crucially, we are not simply aiming for the usual sense of generalization, i.e.,

low population error. Knowing that true distances have a quasimetric structure,

we can better evaluate predictors and desire ones that fit the training data and are
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(approximately) quasimetrics. These objectives also indirectly capture generalization

because a predictor failing either requirement must have large error on some pairs,

whose true distances follow quasimetric constraints. We formalize this relation in

Theorem 3.4.3.

3.3.1 Learning Algorithms and Hypothesis Spaces

Ideally, quasimetric learning should scale well with data, potentially generalize to

unseen samples, and support integration with other deep learning systems (e.g., via

differentiation).

Relaxed hypothesis spaces. One can simply learn a generic function approxi-

mator that maps the (concatenated) input pair to a scalar as the prediction of the

pair’s distance, or its transformed version (e.g., log distance). This approach has been

adopted in learning graph distances (Rizi et al., 2018) and plan costs in MDPs (Tian

et al., 2020a). When the function approximator is a deep neural network, we refer to

such methods as unconstrained networks. While they are known to fit training data

well (Jacot et al., 2018), in this paper we also investigate whether they learn to be

(approximately) quasimetrics.

Restricted hypothesis spaces. Alternatively, we can encode each input to a

latent space 𝒵, where a latent quasimetric 𝑑𝑧 gives the distance prediction. This

guarantees learning a quasimetric over data space 𝒳 . Often 𝑑𝑧 is restricted to a subset

unable to approximate all quasimetrics, i.e., an overly restricted hypothesis space,

such as metric embeddings and the recently proposed DeepNorm and WideNorm (Pitis

et al., 2020). While our proposed Poisson Quasimetric Embedding (PQE) (specified

in Section 3.5) is also a latent quasimetric, it can approximate arbitrary quasimetrics

(and is differentiable). PQE thus searches in a space that approximates all

quasimetrics and only quasimetrics.
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Figure 3-2: Quasimetric learning on a 3-element space. Leftmost: Training set contains all
pairs except for (𝑎, 𝑐). Arrow labels show quasimetric distances (rather than edge weights).
A quasimetric 𝑑 should predict 𝑑(𝑎, 𝑐) ∈ [28, 30]. Right three: Different formulations
are trained to fit training pairs distances, and then predict on the test pair. Plots show
distribution of the prediction over 100 runs.

3.3.2 A Toy Example

To build up intuition on how various algorithms perform according to our two goals,

we consider a toy quasimetric space with only 3 elements in Figure 3-2. The space has

a total of 9 pairs, 8 of which form the training set. Due to quasimetric requirements

(esp. triangle inequality), knowing distances of these 8 pairs restricts valid values

for the heldout pair to a particular range (which is [28, 31] in this case). If a model

approximates 8 training pairs well and respects quasimetric constraints well, its

prediction on that heldout pair should fall into this range.

We train three models w.r.t. mean squared error (MSE) over the training set using

gradient descent:

• Unconstrained deep network that predicts distance,

• Metric embedding into a latent Euclidean space with a deep encoder,

• Quasimetric embedding into a latent PQE space with a deep encoder (our

method from Section 3.5).
The three approaches exhibit interesting qualitative differences. Euclidean em-

bedding, unable to model asymmetries in training data, fails to attain a low training

error. While both other methods approximate training distances well, unconstrained

networks greatly violate quasimetric constraints; only PQEs respect the constraints

and consistently predicts within the valid range.

Here, the structural prior of embedding into a quasimetric latent space appears
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important to successful learning. Without any such prior, unconstrained networks fail

badly. In the next section, we present a rigorous theoretical study of the quasimetric

learning task, which confirms this intuition.

3.4 Theoretical Analysis of Various Learning Algo-

rithms

In this section, we define concrete metrics for the two quasimetric learning objectives

stated above, and present positive and negative theoretical findings for various learning

algorithms.

Overview. Our analysis focuses on data-agnostic bounds, which are of great interests

in machine learning (e.g., VC-dimension (Vapnik and Chervonenkis, 2015)). We

prove a strong negative result for a general family of learning algorithms (including

unconstrained MLPs trained in NTK regime, 𝑘-nearest neighbor, and min-norm linear

regression): they may arbitrarily badly fail to fit training data or respect quasimetric

constraints (Theorem 3.4.6). Our informative construction reveals the core reason

of their failure. Quasimetric embeddings, however, enjoy nice properties as long as

they can approximate arbitrary quasimetrics, which motivates searching for “universal

quasimetrics”. The next section presents PQEs as such universal approximators and

states their theoretical guarantees.

Assumptions. We consider quasimetric spaces (𝒳 , 𝑑) with 𝒳 ⊂ R𝑑, finite size

𝑛 = |𝑋| <∞, and finite distances (i.e., 𝑑 has range [0,∞)). It allows discussing deep

networks which can’t handle infinities well. This mild assumption can be satisfied

by simply capping max distances in quasimetrics. For training, 𝑚 < 𝑛2 pairs are

uniformly sampled as training pairs 𝑆 ⊂ 𝒳 × 𝒳 without replacement.

In the appendix, we provide all full proofs, further discussions of our assump-

tions and presented results, as well as additional results concerning specific learning

algorithms and settings.
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3.4.1 Distortion and Violation Metrics for Quasimetric Learn-

ing

We use distortion as a measure of how well the distance is preserved, as is standard

in embedding analyses (e.g., Bourgain (1985)). In this work, we especially consider

distortion over a subset of pairs, to quantify how well a predictor 𝑑 approximates

distances over the training subset 𝑆.

Definition 3.4.1 (Distortion). Distortion of 𝑑 over a subset of pairs 𝑆 ⊂ 𝒳 × 𝒳

is dis𝑆(𝑑) ,
(︀
max(𝑥,𝑦)∈𝑆,�̸�=𝑦

𝑑(𝑥,𝑦)
𝑑(𝑥,𝑦)

)︀(︀
max(𝑥,𝑦)∈𝑆,�̸�=𝑦

𝑑(𝑥,𝑦)

𝑑(𝑥,𝑦)

)︀
, and its overall distortion is

dis(𝑑) , dis𝒳×𝒳 (𝑑).

For measuring consistency w.r.t. quasimetric constraints, we define the (quasimet-

ric) violation metric. Violation focuses on triangle inequality, which can often be more

complex (e.g., in Figure 3-2), compared to the relatively simple non-negativity and

Identity of Indiscernibles.

Definition 3.4.2 (Quasimetric Violation). Quasimetric violation (violation for short)

of 𝑑 is vio(𝑑) , max𝐴1,𝐴2,𝐴3∈𝒳
𝑑(𝐴1,𝐴3)

𝑑(𝐴1,𝐴2)+𝑑(𝐴2,𝐴3)
, where we define 0

0
= 1 for notation

simplicity.

Both distortion and violation are nicely agnostic to scaling. Furthermore, assuming

non-negativity and Identity of Indiscernibles, vio(𝑑) ≥ 1 always, with equality iff 𝑑 is a

quasimetric.

Distortion and violation also capture generalization. Because the true distance 𝑑

has optimal training distortion (on 𝑆) and violation, a predictor 𝑑 that does badly on

either must also be far from truth.

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-

ror). For non-negative 𝑑, dis(𝑑) ≥ max(dis𝑆(𝑑),
√︀

vio(𝑑)), where dis(𝑑) captures gen-

eralization over the entire 𝒳 space.
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3.4.2 Learning Algorithms Equivariant to Orthogonal Trans-

forms

For quasimetric space (𝒳 , 𝑑), 𝒳 ⊂ R𝑑, we consider applying general learning algorithms

by concatenating pairs to form inputs ∈ R2𝑑 (e.g., unconstrained networks). While

straightforward, this approach means that algorithms are generally unable to relate

the same element appearing as 1st or 2nd input. As we will show, this is sufficient for

a wide family of learning algorithms to fail badly– ones equivariant to orthogonal

transforms (OrthEquiv algorithms; Definition 3.4.4).

For an OrthEquiv algorithm, training on orthogonally transformed data does not

affect its prediction, as long as test data is identically transformed. In fact, many

standard learning algorithms are OrthEquiv, including unconstrained MLP trained in

NTK regime (Lemma 3.4.5).

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set 𝒟 = {(𝑧𝑖, 𝑦𝑖)}𝑖,

where 𝑧𝑖 ∈ 𝒵 are inputs and 𝑦𝑖 ∈ 𝒴 are targets, a learning algorithm Alg produces a

function Alg(𝒟) : 𝒵 → 𝑌 such that Alg(𝒟)(𝑧′) is the function’s prediction on sample

𝑧′. Consider 𝒯 a set of transformations 𝒵 → 𝒵. Alg is equivariant to 𝒯 iff for all trans-

form 𝑇 ∈ 𝒯 , training set 𝒟, Alg(𝒟) = Alg(𝑇𝒟)∘𝑇 , where 𝑇𝒟 = {(𝑇𝑧, 𝑦) : (𝑧, 𝑦) ∈ 𝒟}

is the training set with transformed inputs.

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). 𝑘-nearest-neighbor with

Euclidean distance, dot-product kernel ridge regression (including min-norm linear

regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Failure case. These algorithms treat the concatenated inputs as generic vectors. If

a transform fundamentally changes the quasimetric structure but is not fully reflected

in the learned function (e.g., due to equivariance), learning must fail. The two training

sets in Figure 3-3 are sampled from two different quasimetrics over the same 6 elements

An orthogonal transform links both training sets without affecting the test pair, which

is constrained differently in two quasimetrics. An OrthEquiv algorithm, necessarily

predicting the test pair identically seeing either training set, must thus fail on one. In
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Figure 3-3: Two training sets pose incompatible constraints ( ) for the test pair distance
𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can exchange (*, 𝑦) ↔ (*, 𝑦′) and
(*, 𝑤) ↔ (*, 𝑤′), leaving the test pair (𝑦, 𝑧) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

the appendix, we empirically verify that unconstrained MLPs indeed do fail on this

construction.

Extending to larger quasimetric spaces, we consider graphs containing many copies

of both patterns in Figure 3-3. With high probability, our sampled training set fails in

the same way—the learning algorithm can not distinguish it from another training set

with different quasimetric constraints.

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (𝑓𝑛)𝑛 be an arbitrary se-

quence of large values. There is an infinite sequence of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛

with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that, over a random training set 𝑆 of size 𝑚, any

OrthEquiv algorithm outputs a predictor 𝑑 that

• 𝑑 fails non-negativity, or

• max(dis𝑆(𝑑), vio(𝑑)) ≥ 𝑓𝑛 (i.e., 𝑑 approximates training 𝑆 badly or is far from

a quasimetric),
with probability 1/2 − 𝑜(1), as long as 𝑆 does not contain almost all of the pairs

1−𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Furthermore, standard NTK results show that unconstrained MLPs trained in

NTK regime converge to a function with zero training loss. By the above theorem,

the limiting function is not a quasimetric with nontrivial probability. In the appendix,
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we formally state this result. Despite their empirical usages, these results suggest that

unconstrained networks are likely not suited for quasimetric learning.

3.4.3 Quasimetric Embeddings

A quasimetric embedding consists of a mapping 𝑓 from data space 𝒳 to a latent

quasimetric space (𝒵, 𝑑𝑧), and predicts 𝑑(𝑥, 𝑦) , 𝑑𝑧(𝑓(𝑥), 𝑓(𝑦)). Therefore, they

always respect all quasimetric constraints and attain optimal violation of value 1,

regardless of training data.

However, unlike deep networks, their distortion (approximation) properties depend

on the specific latent quasimetrics. If the latent quasimetric is not overly restrictive

and can approximate any quasimetric (with flexible learned encoders), we have nice

guarantees for both distortion and violation.

In the section below, we present Poisson Quasimetric Embedding (PQE) as such a

latent quasimetric, along with its theoretical distortion and violation guarantees.

3.5 Poisson Quasimetric Embeddings (PQEs)

Motivated by above theoretical findings, we aim to find a latent quasimetric space

(R𝑑, 𝑑𝑧) with a deep network encoder 𝑓 : 𝒳 → R𝑑, and a quasimetric 𝑑𝑧 that is both

universal and differentiable:

• (universality) for any data quasimetric (𝒳 , 𝑑), there exists an encoder 𝑓 such

that 𝑑𝑧(𝑓(𝑥), 𝑓(𝑦)) ≈ 𝑑(𝑥, 𝑦);

• (differentiability) 𝑑𝑧 is differentiable (for optimizing 𝑓 and possible integration

with other gradient-based systems).

Notation 3.5.1. We use 𝑥, 𝑦 for elements of the data space 𝒳 , 𝑢, 𝑣 for elements of

the latent space R𝑑, upper-case letters for random variables, and (·)𝑧 for indicating

functions in latent space (e.g., 𝑑𝑧).

An existing line of machine learning research learns quasipartitions, or partial

orders, via Order Embeddings (Vendrov et al., 2015). Quasipartitions are in fact
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special cases of quasimetrics whose distances are restricted to be binary, denoted as

𝜋. An Order Embedding is a representation of a quasipartition, where 𝜋OE(𝑥, 𝑦) = 0

(i.e., 𝑥 is related to 𝑦) iff 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise:

𝜋OE(𝑥, 𝑦) , 𝜋OE
𝑧 (𝑓(𝑥), 𝑓(𝑦)) , 1−

∏︁
𝑗

1𝑓(𝑥)𝑗−𝑓(𝑦)𝑗≤0. (3.3)

Order Embedding is universal and can model any quasipartition (see appendix and

Hiraguchi (1951)).

Can we extend this discrete idea to general continuous quasimetrics? Quite naïvely,

one may attempt a straightforward soft modification of Order Embedding:

𝜋SoftOE
𝑧 (𝑢, 𝑣) , 1−

∏︁
𝑗

exp
(︀
− (𝑢𝑗 − 𝑣𝑗)

+
)︀
= 1− exp

(︁
−
∑︁
𝑗

(𝑢𝑗 − 𝑣𝑗)
+
)︁
, (3.4)

which equals 0 if 𝑢 ≤ 𝑣 coordinate-wise, and increases to 1 as some coordinates violate

this condition more. However, it is unclear whether this gives a quasimetric.

A more principled way is to parametrize a (scaled) distribution of latent quasi-

partitions Π𝑧, whose expectation naturally gives a continuous-valued quasimetric:

𝑑𝑧(𝑢, 𝑣; Π𝑧, 𝛼) , 𝛼 · E𝜋𝑧∼Π𝑧 [𝜋𝑧(𝑢, 𝑣)] , 𝛼 ≥ 0. (3.5)

Poisson Quasimetric Embedding (PQE) gives a general recipe for constructing

such Π𝑧 distributions so that 𝑑𝑧 is universal and differentiable. Within this framework,

we will see that 𝜋SoftOE
𝑧 is actually a quasimetric based on such a distribution and is

(almost) sufficient for our needs.

3.5.1 Distributions of Latent Quasipartitions

A random latent quasipartition 𝜋𝑧 : R𝑑 × R𝑑 → {0, 1} is a difficult object to model,

due to complicated quasipartition constraints. Fortunately, the Order Embedding

representation (Equation (3.3)) is without such constraints. If, instead of fixed latents
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𝑢, 𝑣, we have random latents 𝑅(𝑢), 𝑅(𝑣), we can compute:

E𝜋𝑧 [𝜋𝑧(𝑢, 𝑣)] = E𝑅(𝑢),𝑅(𝑣)

[︀
𝜋OE
𝑧 (𝑅(𝑢), 𝑅(𝑣))

]︀
= 1− P [𝑅(𝑢) ≤ 𝑅(𝑣) coordinate-wise] .

(3.6)

In this view, we represent a random 𝜋𝑧 via a joint distribution of random vectors1

{𝑅(𝑢)}𝑢∈R𝑑 , i.e., a stochastic process. To easily compute the probability of this

coordinate-wise event, we assume that each dimension of random vectors is from an

independent process, and obtain

E𝜋𝑧 [𝜋𝑧(𝑢, 𝑣)] = 1−
∏︁
𝑗

P [𝑅𝑗(𝑢) ≤ 𝑅𝑗(𝑣)] . (3.7)

The choice of stochastic process is flexible. Using Poisson processes (with Lebesgue

mean measure; Definition 3.2.3) that count random points on half-lines2 (−∞, 𝑎], we

can have 𝑅𝑗(𝑢) = 𝑁𝑗((∞, 𝑢𝑗]), the (random) count of events in (∞, 𝑢𝑗] from 𝑗-th

Poisson process:

E𝜋𝑧∼Π𝑧 [𝜋𝑧(𝑢, 𝑣)] = 1−
∏︁
𝑗

P
[︀
𝑁𝑗((−∞, 𝑢𝑗]) ≤ 𝑁𝑗((−∞, 𝑣𝑗])

]︀
(3.8)

= 1−
∏︁
𝑗

exp
(︀
− (𝑢𝑗 − 𝑣𝑗)

+
)︀
= 𝜋SoftOE

𝑧 (𝑢, 𝑣), (3.9)

where we used Fact 3.2.4 and the observation that one half-line is either subset

or superset of another. Indeed, 𝜋SoftOE
𝑧 is an expected quasipartition (and thus a

quasimetric), and is differentiable.

Considering a mixture of such distributions for expressiveness, the full latent

quasimetric formula is

𝑑PQE-LH
𝑧 (𝑢, 𝑣;𝛼) ,

∑︁
𝑖

𝛼𝑖 ·
(︁
1− exp

(︀
−
∑︁
𝑗

(𝑢𝑖,𝑗 − 𝑣𝑖,𝑗)
+
)︀)︁
, (3.10)

1In general, these random vectors 𝑅(𝑢) do not have to be of the same dimension as 𝑢 ∈ R𝑑,
although the dimensions do match in the PQE variants we experiment with.

2Half-lines has Lebesgue measure ∞. More rigorously, consider using a small value as the lower
bounds of these intervals, which leads to same result.
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where we slightly abuse notation and consider latents 𝑢 and 𝑣 as (reshaped to) 2-

dimensional. We will see that this is a special PQE case with Lebesgue measure and

half-lines, and thus denoted PQE-LH.

3.5.2 General PQE Formulation

We can easily generalize the above idea to independent Poisson processes of general

mean measures 𝜇𝑗 and (sub)set parametrizations 𝑢→ 𝐴𝑗(𝑢), and obtain an expected

quasipartition as:

E𝜋𝑧∼ΠPQE
𝑧 (𝜇,𝐴)[𝜋𝑧(𝑢, 𝑣)] (3.11)

,1−
∏︁
𝑗

P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] (3.12)

=1−
∏︁
𝑗

P
[︁
Pois(𝜇𝑗(𝐴𝑗(𝑢) ∖ 𝐴𝑗(𝑣))⏟  ⏞  

Poisson rate of points landing only in 𝐴𝑗(𝑢)

) ≤ Pois(𝜇𝑗(𝐴𝑗(𝑣) ∖ 𝐴𝑗(𝑢)))
]︁
, (3.13)

which is differentiable as long as the measures and set parametrizations are (after set

differences). Similarly, considering a mixture gives us an expressive latent quasimetric.

A general PQE latent quasimetric is defined with {(𝜇𝑖,𝑗, 𝐴𝑖,𝑗)}𝑖,𝑗 and weights 𝛼𝑖 ≥ 0

as:

𝑑PQE
𝑧 (𝑢, 𝑣;𝜇,𝐴, 𝛼)

,
∑︁
𝑖

𝛼𝑖 · E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[𝜋𝑧(𝑢, 𝑣)] (3.14)

=
∑︁
𝑖

𝛼𝑖

(︁
1−

∏︁
𝑗

P
[︁
Pois(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣))) ≤ Pois(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑣) ∖ 𝐴𝑖,𝑗(𝑢)))

]︁)︁
,

whose optimizable parameters include {𝛼𝑖}𝑖, possible ones from {(𝜇𝑖,𝑗, 𝐴𝑖,𝑗)}𝑖,𝑗 (and

encoder 𝑓).

This general recipe can be instantiated in many ways. Setting 𝐴𝑖,𝑗(𝑢) → (−∞, 𝑢𝑖,𝑗]

and Lebesgue 𝜇𝑖,𝑗, recovers PQE-LH. In Appendix B.3.2, we consider a form with

Gaussian-based measures and Gaussian-shapes, denoted as PQE-GG. Unlike PQE-LH,

PQE-GG always gives nonzero gradients.
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Implementation Techniques for PQEs In Appendix B.3.4, we discuss several

implementation techniques that empirically improve stability, including learning 𝛼𝑖’s

with deep linear networks, a formulation that outputs discounted distance, etc. These

techniques are also implemented in our GitHub repository: https://github.com/

quasimetric-learning/torch-quasimetric.

3.5.3 Continuous-valued Stochastic Processes

But why Poisson processes over more common choices such as Gaussian processes? It

turns out that common continuous-value processes fail to give a differentiable formula.

Consider a non-degenerate process {𝑅(𝑢)}𝑢, where (𝑅(𝑢), 𝑅(𝑣)) has bounded

density if 𝑢 ̸= 𝑣. Perturbing 𝑢→ 𝑢+ 𝛿 leaves P [𝑅(𝑢) = 𝑅(𝑢+ 𝛿)] = 0. Then one of

P
[︀
𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)

]︀
and P

[︀
𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢)

]︀
must be far away from 1 (as they sum

to 1), breaking differentiability at P [𝑅(𝑢) ≤ 𝑅(𝑢)] = 1. (This argument is formalized

in the appendix.) Discrete-valued processes, however, can leave most probability mass

on 𝑅(𝑢) = 𝑅(𝑢+ 𝛿) and thus remain differentiable.

3.5.4 Theoretical Guarantees

Our PQEs bear similarity with the algorithmic quasimetric embedding construction

in Mémoli et al. (2018). Extending their analysis to PQEs, we obtain the following

distortion and violation guarantees.

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of

Section 3.4, any quasimetric space with size 𝑛 and treewidth 𝑡 admits a PQE-LH and

a PQE-GG with distortion 𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder

(e.g., a ReLU network with ≥ 3 layers and polynomial width).

In fact, these guarantees apply to any PQE formulation that satisfies a mild

condition. Informally, any PQE with ℎ× 𝑘 Poisson processes (i.e., ℎ mixtures) enjoys

the above guarantees if it can approximate the discrete counterpart: mixtures of ℎ

Order Embeddings, each specified with 𝑘 dimensions. In the appendix, we make this
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condition precise and provide a full proof of the above theorem.

3.5.5 Experiments

Our experiments are designed to (1) confirm our theoretical findings and (2) compare

PQEs against a wider range of baselines, across different types of tasks. In all

experiments, we optimize 𝛾-discounted distances (with 𝛾 ∈ {0.9, 0.95}), and compare

the following five families of methods:

• PQEs (2 formulations): PQE-LH and PQE-GG with techniques mentioned

in Section 3.5.2.

• Unconstrained networks (20 formulations): Predict raw distance (directly,

with exp transform, and with (·)2 transform) or 𝛾-discounted distance (directly,

and with a sigmoid-transform). Each variant is run with a possible triangle

inequality regularizer E𝑥,𝑦,𝑧
[︀
max(0, 𝛾𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧) − 𝛾𝑑(𝑥,𝑧))2

]︀
for each of 4 weights

∈ {0, 0.3, 1, 3}.

• Asymmetrical dot products (20 formulations): On input pair (𝑥, 𝑦), en-

code each into a feature vector with a different network, and take the dot product.

Identical to unconstrained networks, the output is used in the same 5 ways, with

the same 4 triangle inequality regularizer options.

• Metric encoders (4 formulations): Embed into Euclidean space, ℓ1 space,

hypersphere with (scaled) spherical distance, or a mixture of all three.

• DeepNorm (2 formulations) and WideNorm (3 formulations): Quasi-

metric embedding methods that often require significantly more parameters

than PQEs (often on the order of 106 ∼ 107 more effective parameters; see the

appendix for detailed comparisons) but can only approximate a subset of all

possible quasimetrics (Pitis et al., 2020).

We show average results from 5 runs. The appendix provides experimental details,

full results (including standard deviations), additional experiments, and ablation

studies.
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Figure 3-4: Comparison of PQE and baselines on quasimetric learning in random directed
graphs.

Random directed graphs. We start with randomly generated directed graphs of

300 nodes, with 64-dimensional node features given by randomly initialized neural

networks. After training with MSE on discounted distances, we test the models’

prediction error on the unseen pairs (i.e., generalization), measured also by MSE on

discounted distances. On three graphs with distinct structures, PQEs significantly

outperform baselines across almost all training set sizes (see Figure 3-4). Notably,

while DeepNorm and WideNorm do well on the dense graph quasimetric, they struggle

on the other two, attaining both high test MSE (Figure 3-4) and train MSE (not

shown). This is consistent with the fact that they can only approximate a subset of

all quasimetrics, while PQEs can approximate all quasimetrics.

Large-scale social graph. We choose the Berkeley-Stanford Web Graph (Leskovec

and Krevl, 2014) as the real-wold social graph for evaluation. This graph consists

of 685,230 pages as nodes, and 7,600,595 hyperlinks as directed edges. We use 128-

dimensional node2vec features (Grover and Leskovec, 2016) and the landmark method

(Rizi et al., 2018) to construct a training set of 2,500,000 pairs, and a test set of 150,000

pairs. PQEs generally perform better than other methods, accurately predicting finite

distances while predicting high values for infinite distances (see Table 3.1). DeepNorms

and WideNorms learn finite distances less accurately here, and also do much worse

than PQEs on learning the (quasi)metric of an undirected social graph (shown in the

appendix).
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Triangle
inequality
regularizer

MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQE-LH 7 3.043 1.626 69.942
PQE-GG 7 3.909 1.895 101.824

Best Unconstrained Net.
7 3.086 2.115 59.524
3 2.813 2.211 61.371

Best Asym. Dot Product
7 48.106 2.520 ×1011 2.679 ×1011

3 48.102 2.299 ×1011 2.500 ×1011

Best Metric Embedding 7 17.595 7.540 53.850

Best DeepNorm 7 5.071 2.085 120.045

Best WideNorm 7 3.533 1.769 124.658

Table 3.1: Quasimetric learning on large-scale web graph. “Best” is selected by test MSE
w.r.t. 𝛾-discounted distances.

Offline Q-learning. Optimal goal-reaching plan costs in MDPs are quasimetrics

(Bertsekas and Tsitsiklis, 1991; Tian et al., 2020a) (see also the appendix). In practice,

optimizing deep Q-functions often suffers from stability and sample efficiency issues

(Henderson et al., 2018; Fujimoto et al., 2018). As a proof of concept, we use PQEs

as goal-conditional Q-functions in offline Q-learning, on the grid-world environment

with one-way doors built upon gym-minigrid (Chevalier-Boisvert et al., 2018) (see

Figure 3-1 right), following the algorithm and data sampling procedure described in

Tian et al. (2020a). Adding strong quasimetric structures greatly improves sample

efficiency and greedy planning success rates over popular existing approaches such as

unconstrained networks used in Tian et al. (2020a) and asymmetrical dot products

used in Schaul et al. (2015) (see Figure 3-5). As an interesting observation, some

metric embedding formulations work comparably well.

3.6 Interval Quasimetric Embeddings (IQEs)

In this section, we further improve PQEs by introducing Interval Quasimetric Embed-

dings (IQEs). IQEs enjoy all nice theoretical properties of PQEs, but also drastically

reduces parameter counts and satisfy latent positive homogeneity for easier optimiza-

tion.

The main issue with PQE is that its components are bounded in [0, 1) and suffer
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Figure 3-5: Offline Q-learning results with PQE and baseline architectures as Q-function
parametrizations.
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(a) Poisson Quasimetric Embedding.
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(b) Deep Norm (Pitis et al., 2020).
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(c) Wide Norm (Pitis et al., 2020).
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(d) Interval Quasimetric Embedding.

Figure 3-6: Different latent quasimetrics 𝑑latent. Plots show how predicted distances (and
components forming them) change as two latent vectors move apart. Red bars show the
number of trainable parameters in 𝑑latent. (a) PQE suffers from diminishing gradients. (b,c)
Deep Norm and Wide Norm require expensive latent quasimetric head, and have complex
relations between latents and predictions (due to its learned concave transformations). (d)
IQE uses a simple head and does not suffer from gradient optimization issues. (a-d) Plots
are computed at random initializations, with Deep Norm and Wide concave transformation
parameters scaled to emphasize the non-linearity.
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from diminishing gradients (Figure 3-6a). Special reparametrization tricks are necessary

for successful optimization Section 3.5. We propose Interval Quasimetric Embeddings

(IQE) to directly address this drawback. Appendix B.5 derives IQE via a modified

PQE framework.

IQE is a new encoder-based quasimetric model, where a (learned) encoder maps

data into some latent space, where our latent IQE quasimetric 𝑑IQE outputs a quasi-

metric distance between two given latents.

IQE Components. Similar to PQE, IQE considers input latents as two-dimensional

matrices (via reshaping). For input latents 𝑢, 𝑣 ∈ R𝑘×𝑙, IQE is formed by components

that capture the total size (i.e., Lebesgue measure) of unions of several intervals on

the real line:

∀𝑖 = 1, 2, . . . , 𝑘, 𝑑𝑖(𝑢, 𝑣) ,

⃒⃒⃒⃒
⃒⃒ 𝑙⋃︁
𝑗=1

[︀
𝑢𝑖𝑗,max(𝑢𝑖𝑗, 𝑣𝑖𝑗)

]︀⏟  ⏞  
interval on the real line

⃒⃒⃒⃒
⃒⃒⏟  ⏞  

size of the set formed from union of 𝑙 intervals

. (3.15)

Figure 3-7 provides a graphical illustration on how to compute these components.

Combining IQE Components. Unlike PQE, IQE components are positive homo-

geneous and can be arbitrarily scaled (Figure 3-6d), and thus do not require special

reparametrization in combining them. Simply summing yields the most basic yet

effective IQE formulation, IQE-sum:

𝑑IQE-sum(𝑢, 𝑣) ,
𝑘∑︁
𝑖=1

𝑑𝑖(𝑢, 𝑣) (3.16)

Using the maxmean reduction from prior work (Pitis et al., 2020), we obtain

IQE-maxmean with a single extra parameter 𝛼 ∈ [0, 1] (parametrized via a sigmoid
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Figure 3-7: Computing IQE quasimetric from latent 𝑢 ∈ R2×3 to latent 𝑣 ∈ R2×3.

transform):

𝑑IQE-maxmean(𝑢, 𝑣;𝛼) , maxmean(𝑑1(𝑢, 𝑣), . . . , 𝑑𝑘(𝑢, 𝑣);𝛼) (3.17)

, 𝛼 ·max(𝑑1(𝑢, 𝑣), . . . , 𝑑𝑘(𝑢, 𝑣))

+ (1− 𝛼) ·mean(𝑑1(𝑢, 𝑣), . . . , 𝑑𝑘(𝑢, 𝑣))

Prior methods often require expensive predictor heads (e.g., MRN, Deep Norm

and Wide Norm) and/or complex initialization and reparametrization (e.g., PQEs).

In contrast, both IQE formulations have very simple forms. Next, we will see that

IQEs are not only simple, but also practically effective.

3.6.1 Evaluating IQE on Modelling Social Graphs

We evaluate IQE on the same experiment in Table 3.1 that learns quasimetric graph

distances over the large real-world social graph, Berkeley-Stanford Web Graph (Leskovec

and Krevl, 2014). For both IQE and PQE, we tune the parameters: component size

𝑙 ∈ {8, 16, 32, 64} (and thus correspondingly number of components 𝑘 ∈ {64, 32, 16, 8}).

For other baselines, we tune their parameters in the same fashion as the experiment

in Table 3.1.

IQEs significantly improve modeling large real-world graphs. We train vari-

ous quasimetric models to approximate the training distances by minimizng MSE w.r.t.

𝛾-discounted distance with 𝛾 = 0.9. In Table 3.2, both IQEs greatly outperform all

baselines, attaining lowest MSE, accurately predicting finite distances, and outputting
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Validation Set Metrics

MSE w.r.t. 𝛾-discounted
distances (×10−3) ↓

ℓ1 error when
true 𝑑 <∞ ↓

Predicted distance
when true 𝑑 = ∞ ↑

IQE-sum 1.078 ± 0.053 1.303 ± 0.031 118.244 ± 5.412

IQE-maxmean 1.488 ± 0.307 1.333 ± 0.218 89.635 ± 1.726

PQE-LH 2.921 ± 0.187 1.659 ± 0.048 71.390 ± 0.436

PQE-GG 3.872 ± 0.136 2.121 ± 0.146 ∞ (overflow)

Wide Norm 3.533 ± 0.212 1.769 ± 0.021 124.658 ± 2.868

Deep Norm 5.071 ± 0.135 2.085 ± 0.063 120.045 ± 4.353

MRN 10.820 ± 0.817 2.882 ± 0.205 129.528 ± 4.237

Best Metric Embedding 17.595 ± 0.267 7.540 ± 0.074 53.850 ± 3.843

Best Unconstrained Net.
(No Regularizer) 3.086 ± 0.039 2.115 ± 0.024 59.524 ± 0.370

(+ Δ-Ineq. Regularizer) 2.813 ± 0.063 2.211 ± 0.034 61.371 ± 0.394

Best Asym. Dot Product
(No Regularizer) 48.106 ± 0.006 2.520 ×1011 ±2.175 ×1011 2.679 ×1011 ±2.540 ×1011

(+ Δ-Ineq. Regularizer) 48.102 ± 0.000 2.299 ×1011 ±9.197 ×1010 2.500 ×1011 ±1.446 ×1011

Table 3.2: Modeling the large-scale Berkeley-Stanford Web Graph with different quasimetric
models. For some baseline families, we show the best method picked w.r.t. validation set
MSE.

high predictions for infinite (unreachable) pairs. Compared to the prior best methods,

the simple IQE-sum has a 61% improvement on MSE and a 16% improvement on ℓ1

error (on finite distances).

In the full paper for IQE (Wang and Isola, 2022a), additional experiments on

random graphs and offline Q-learning shows the superior performance of IQE over

general settings. We refer the reader to that paper for more details.

3.6.2 Theoretical Results on Universal Approximation

Following PQEs (Section 3.5.4) and prior works (Liu et al., 2022; Pitis et al., 2020), we

assume that the target quasimetric (𝒳 , 𝑑) has only finite distances. Here we present

strong universal approximation gurantees for IQEs. All full proofs are in Appendix B.6.

Theorem 3.6.1 (IQE Universal Approximation; Finite Case). For any finite

quasimetric space (𝒳 , 𝑑) with |𝒳 | = 𝑛 < ∞, there exists encoders 𝑓1, 𝑓2 such that

(𝑓1, 𝑑IQE-maxmean) exactly represents 𝑑, and (𝑓2, 𝑑IQE-sum) approximates 𝑑 with distor-

tion 𝒪(𝑡 log2 𝑛), where 𝑡 is a complexity measure of (𝒳 , 𝑑) (called treewidth).

Sketch. IQE-maxmean can exactly represent function 𝑑asym(𝑢, 𝑣) = max𝑖(𝑣𝑖 − 𝑢𝑖)
+.
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Rewriting 𝑑(𝑥, 𝑦) = max𝑧∈𝒳 (𝑑(𝑥, 𝑧)− 𝑑(𝑦, 𝑧))+ leads a desired encoder 𝑓1.

For IQE-sum, each IQE component can exactly represent any quasimetric that

takes in binary values (called quasipartitions) with arbitrary scaling. The desired dis-

tortion can be achieved with a convex combination of quasipartitions (Lemma B.3.5),

and thus also with IQE-sum.

Theorem 3.6.2 (IQE Universal Approximation; General Case). Consider any

quasimetric space (𝒳 , 𝑑) where 𝒳 is compact and 𝑑 is continuous. ∀𝜖 > 0, with

sufficiently large 𝑚, there exists some continuous encoder 𝑓 : 𝒳 → R𝑚 such that

∀𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒳 , |𝑑IQE-maxmean(𝑓(𝑥), 𝑓(𝑦))− 𝑑(𝑥, 𝑦)| ≤ 𝜖. (3.18)

Relation with PQE. IQE-maxmean guarantees are strictly stronger than those

of PQEs (and IQE-sum), which is only a distortion bound on the finite case using

polynomial-sized encoders. With the same encoder, IQE-maxmean exactly represents

any finite quasimetric.

Relation with MRN. Our IQE-maxmean analysis is largely inspired by the MRN

results. In Appendix B.6, full proofs reduce the MRN asymmetrical component to an

IQE-maxmean.

Deep Norm and Wide Norm. Also using a connection to MRN, we are the first

to prove that Deep Norm and Wide Norm universally approximate any quasimetric.

Theorem 3.6.3 (Deep Norm and Wide Norm Universal Approximation).

Deep Norm and Wide Norm enjoy the same approximation gaurantees as stated for

IQE-maxmean in Theorems 3.6.1 and 3.6.2.

3.7 Related Work

Metric learning. Metric learning aims to approximate a target metric/similarity

function, often via a learned embedding into a metric space. This idea has successful
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applications in dimensionality reduction (Tenenbaum et al., 2000), information retrieval

(Wang et al., 2014), clustering (Xing et al., 2002), classification (Weinberger et al.,

2006; Hoffer and Ailon, 2015), etc. While asymmetrical formulations have been

explored, they either ignore quasimetric constraints (Oord et al., 2018; Logeswaran

and Lee, 2018; Schaul et al., 2015), or are not general enough to approximate arbitrary

quasimetric (Balashankar and Subramanian, 2021), which is the focus of the present

paper.

Isometric embeddings. Isometric (distance-preserving) embeddings is a highly

influential and well-studied topic in mathematics and statistics. Fundamental results,

such as Bourgain’s random embedding theorem (Bourgain, 1985), laid important

ground work in understanding and constructing (approximately) isometric embed-

dings. While most such researches concern metric spaces, Mémoli et al. (2018) study

an algorithmic construction of a quasimetric embedding via basic blocks called quasi-

partitions. Their approach requires knowledge of quasimetric distances between all

pairs and thus is not suitable for learning. Our formulation takes inspiration from the

form of their embedding, but is fully learnable with gradient-based optimization over

a training subset.

Quasimetrics and partial orders. Partial orders (quasipartitions) are special

cases of quasimetrics (see Section 3.5). A line of machine learning research studies

embedding partial order structures into latent spaces for tasks such as relation discovery

and information retrieval (Vendrov et al., 2015; Suzuki et al., 2019; Hata et al.,

2020; Ganea et al., 2018). Unfortunately, unlike PQEs, such formulations do not

straightforwardly generalize to arbitrary quasimetrics, which are more than binary

relations. Similar to PQEs, DeepNorm and WideNorm are quasimetric embedding

approaches learnable with gradient-based optimization (Pitis et al., 2020). Theoreically,

they universally approximates a subset of quasimetrics (ones induced by asymmetrical

norms). Despite often using many more parameters, they are restricted to this subset

and unable to approximate general quasimetrics like PQEs do (Figure 3-4).
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3.8 Implications

In this work, we study quasimetric learning via both theoretical analysis and empirical

evaluations.

Theoretically, we show strong negative results for a common family of learning

algorithms, and positive guarantees for our proposed Poisson Quasimetric Embedding

(PQE). Our results introduce the novel concept of equivariant learning algorithms,

which may potentially be used for other learnability analyses with algorithms such

as deep neural networks. Additionally, a thorough average-case or data-dependent

analysis would nicely complement our results, and may shed light on conditions where

algorithms like deep networks can learn decent approximations to quasimetrics in

practice.

PQEs are the first quasimetric embedding formulation that can be learned via

gradient-based optimization. Empirically, PQEs show promising performance in

various tasks. Furthermore, PQEs are fully differentiable, and (implicitly) enforce a

quasimetric structure in any latent space. They are particularly suited for integration

in large deep learning systems, as we explore in the Q-learning experiments. This can

potentially open the gate to many practical applications such as better embedding for

planning with MDPs, efficient shortest path finding via learned quasimetric heuristics,

representation learning with quasimetric similarities, causal relation learning, etc.

Finally, we proposed Interval Quasimetric Embedding (IQE) with both strong

theoretical guarantees and improved empirical performance over PQE. We believe

that IQE’s simple yet powerful form can enable more machine learning applications of

quasimetrics in modeling asymmetrical geometric structures, and that our four criteria

are helpful in developing novel and better quasimetric structures.

82



Chapter 4

Reinforcement Learning as

Quasimetric Representation Learning

In goal-reaching reinforcement learning (RL), the optimal value function has a par-

ticular geometry, called quasimetric structure. This chapter introduces Quasimetric

Reinforcement Learning (QRL), a new RL method that utilizes quasimetric models

to learn optimal value functions. Distinct from prior approaches, the QRL objective

is specifically designed for quasimetrics, and provides strong theoretical recovery

guarantees. Empirically, we conduct thorough analyses on a discretized MountainCar

environment, identifying properties of QRL and its advantages over alternatives. On

offline and online goal-reaching benchmarks, QRL also demonstrates improved sample

efficiency and performance, across both state-based and image-based observations.

This chapter is based on published work:

1. Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning with

co-authors Antonio Torralba, Phillip Isola, and Amy Zhang at the International

Conference on Machine Learning (ICML) 2023 (Wang et al., 2023).

4.1 Introduction

Modern decision-making problems often involve dynamic programming on the cost-to-

go function, also known as the value function. This function allows for bootstrapping,

83



where a complicated decision is broken up into a series of subproblems. Once a

subproblem is solved, its subgraph can be collapsed into a single node whose cost is

summarized by the value function. This approach appears in nearly all contemporary

RL and planning algorithms.

In deep RL, value functions are modeled with general neural nets, which are

universal function approximators. Further, most RL algorithms focus on optimizing

toward a single goal. In this setting, the value function 𝑉 *(𝑠) reports the (optimal)

cost-to-go to achieve that single goal from state 𝑠 ∈ 𝒮. It is known that 𝑉 * can be

any function 𝑉 * : 𝒮 → R, that is, for any 𝑉 * : 𝒮 → R, there exists a Markov Decision

Process (MDP) for which that 𝑉 * is the desired optimal value function.

However, an additional structure emerges when we switch to the multi-task setting,

where the (goal-conditioned) value function 𝑉 *(𝑠; 𝑔) : 𝒮 × 𝒮 → R is the cost-to-go to

a given goal state 𝑔 (Figure 4-1). In this case, the optimal value function, for any

MDP, is always a quasimetric function (Chapter 3; Proposition B.1.4; Sontag (1995);

Tian et al. (2020a); Liu et al. (2022)), which is a generalization of metric functions to

allow asymmetry while still respecting the triangle inequality.

Given this structure, it is natural to constrain value function search to the space

of quasimetrics. This approach searches within a much smaller subset of the space

of all functions 𝒮 × 𝒮 → R, ensuring that the true value function is guaranteed to

be present within this subspace. Differentiable parametric quasimetric modelshave

already enabled a number of studies to explore the use of these models in standard

RL algorithms, resulting in improved performance in some cases (Section 3.5.5; Pitis

et al. (2020); Liu et al. (2022)) .

However, traditional RL algorithms (such as Q-learning (Watkins, 1989)) were

designed for large unconstrained function spaces, and their performance may severely

degrade with restricted spaces (Wang et al., 2020, 2021). Instead of constraining the

search space, they encourage quasimetric properties via the objective function. For

example, the Bellman update partly enforces the triangle inequality on the current

state, next state, and target goal. With the advent of differentiable parametric

quasimetric models, these properties come for free with the architecture, and we aim
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to design a new RL algorithm specifically geared towards learning quasimetric value

functions.

In this work, we propose Quasimetric Reinforcement Learning (QRL). QRL is

in the family of geometric approaches to value function learning, which model the

value function as some distance metric, or, in our case, a quasimetric. Obtaining local

distance estimates is easy because the cost of a single transition is by definition given

by the reward function, and can be learned via regression towards observed rewards.

However, capturing global relations is hard. This is a problem studied in many fields

such as metric learning (Roweis and Saul, 2000; Tenenbaum et al., 2000), contrastive

learning (Oord et al., 2018; Wang and Isola, 2020), etc. A general principle is to find

a model where local relationships are captured and otherwise states are spread out.

We argue that a similar idea can be used for value function learning. QRL finds a

quasimetric value function in which local distances are preserved , but otherwise states

are maximally spread out . All three properties are essential in accurately learning the

function. Intuitively, a quasimetric function that maximizes the separation of states 𝑠0

and 𝑠1, subject to the constraint that it captures cost for each adjacent pair of states,

gives exactly the cost of the shortest path from 𝑠0 to 𝑠1. It can’t be longer than that

due to triangle inequality from quasimetric and preservation of local distances. It

can’t be shorter than that due to the maximal spreading . Analogously, consider a

chain with several links. If one pushes the chain ends apart, then the distance between

the ends is exactly equal to the length of all the links.

These three properties (which we will indicate with the three text colors above)

make our method distinct from other contrastive approaches to RL, and ensure that

QRL provably learns the optimal value function. Some alternatives use symmetrical

metrics that cannot capture complex dynamics (Yang et al., 2020; Ma et al., 2022;

Sermanet et al., 2018). Others do not enforce how much adjacent states are pulled

together nor how much states are pushed apart, and rely on carefully weighting loss

terms and specific sample distributions to estimate on-policy (rather than optimal)

values (Eysenbach et al., 2022; Oord et al., 2018).

In summary, our contributions in this paper are
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Figure 4-1: In multi-goal RL, the set of all possible (optimal) value functions is exactly the
set of quasimetrics. In single-task RL, there is no similar structure and value functions can
be any function.

• Based on the connection between value functions and quasimetrics (Section 4.2),

we propose QRL, a new RL framework that utilizes quasimetric models to learn

optimal goal-reaching value functions (Section 4.3).

• We provide theoretical guarantees (Section 4.3.1) as well as thorough empirical

analysis on a discretized MountainCar environment (Section 4.3.3), highlighting

qualitative differences with many existing methods.

• We augment the proposed method to (optionally) also learn optimal Q-functions

and/or policies (Section 4.3.4).

• On offline maze2d tasks, QRL performs well in single-goal and multi-goal eval-

uations, improving > 37% over the best baseline and > 46% over the d4rl

handcoded reference controller Fu et al. (2020) (Section 4.5.1).

• Our learned value functions can be directly used in conjunction with trajectory

modeling and planning methods, improving their performances (Section 4.5.1).

• On online goal-reaching settings, QRL shows up to 4.9× improved sample

efficiency and performance in both state-based and imaged-based observations,

outperforming baselines including Contrastive RL (Eysenbach et al., 2022) and
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plugging quasimetric Q-function models into existing RL algorithms (Liu et al.,

2022) (Section 4.5.2).

4.2 Value Functions are Quasimetrics

This section covers the preliminaries on goal-reaching RL settings, value functions,

and quasimetrics. We also present a new result showing an equivalence between the

latter two.

4.2.1 Goal-Reaching Reinforcement Learning

We focus on the goal-reaching RL tasks in the form of Markov Decision Processes

(MDPs): (𝒮,𝒜, 𝑃, 𝑅), where 𝒮 is the state space, 𝒜 is the action space, 𝑃 : 𝒮 ×𝒜 →

Δ(𝒮) is the transition function, and 𝑅 : 𝒮 ×𝒮 → [𝑅min, 0] is the reward (cost) function

for performing a transition between two states. Δ(𝐴) denotes the set of distributions

over set 𝐴.

Given a target state 𝑠goal ∈ 𝒮, a goal-conditioned agent 𝜋(𝑎 | 𝑠; 𝑠goal) is tasked

to reach 𝑠goal as soon as possible from the current state 𝑠. Formally, until the agent

reaches the goal, it receives a negative reward (cost) 𝑟(𝑠, 𝑠′) for each transition (𝑠, 𝑠′).

The agent 𝜋 aims to maximize the expected total reward given any 𝑠 and 𝑠goal, which

equals the negated total cost. We call this quantity the (goal-conditioned) on-policy

value function 𝑉 𝜋(𝑠; 𝑠goal) for 𝜋.

There exists an optimal policy 𝜋* that is universally optimal:

∀𝑠, 𝑠goal, 𝑉 𝜋*
(𝑠; 𝑠goal) = max

𝜋
𝑉 𝜋(𝑠; 𝑠goal). (4.1)

We thus define the optimal value function 𝑉 * , 𝑉 𝜋* .

Similarly, we can define the optimal state-action value function, i.e., Q-function:

𝑄*(𝑠, 𝑎; 𝑠goal) , E𝑠′∼𝑃 (𝑠,𝑎) [𝑅(𝑠, 𝑠
′) + 𝑉 *(𝑠′; 𝑠goal)] .
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4.2.2 Value-Quasimetric Equivalence

Regardless of the underlying MDP, some fundamental properties of optimal value 𝑉 *

always hold.

Triangle Inequality. As observed in Chapter 3 and prior works (Liu et al., 2022;

Pitis et al., 2020; Durugkar et al., 2021), the optimal value 𝑉 * always obeys the

triangle inequality (due to optimality and Markov property):

∀𝑠1, 𝑠2, 𝑠3, 𝑉 *(𝑠1; 𝑠2) + 𝑉 *(𝑠2; 𝑠3) ≤ 𝑉 *(𝑠1; 𝑠3). (4.2)

Intuitively, 𝑉 *(𝑠1, 𝑠3) is the highest value among all plans from 𝑠1 to 𝑠3; and 𝑉 *(𝑠1; 𝑠2)+

𝑉 *(𝑠2; 𝑠3) is the highest among all plans from 𝑠1 to 𝑠2 and then to 𝑠3, a more restricted

set. Thus, Equation (4.2) holds, and −𝑉 * is just like a metric function on 𝒮, except

that it may be asymmetrical.

Quasimetrics are a generalization of metrics in that they do not require symmetry.

For a set 𝒳 , a quasimetric is a function 𝑑 : 𝒳 × 𝒳 → R≥0 such that

∀𝑥1, 𝑥2, 𝑥3, 𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑥3) ≥ 𝑑(𝑥1, 𝑥3) (4.3)

∀𝑥, 𝑑(𝑥, 𝑥) = 0. (4.4)

We use Qmet(𝒳 ) to denote all such quasimetrics over 𝒳 .

Equation (4.2) shows that −𝑉 * ∈ Qmet(𝒮). In fact, the other direction also holds:

for any 𝑑 ∈ Qmet(𝒮), −𝑑 is the optimal value function for some MDP defined on 𝒮.

Theorem 4.2.1 (Value-Quasimetric Equivalence).

Qmet(𝒮) ≡ {−𝑉 * : 𝑉 * is the optimal value of

an MDP on 𝒮}. (4.5)

Generally, on-policy value −𝑉 𝜋 may not be a quasimetric.
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All proofs are deferred to the appendix.

Structure emerges in multi-goal settings. The space of quasimetrics is the

exact function class for goal-reaching RL. In contrast, a specific-goal value function

𝑉 *( · ; 𝑠goal) can be any arbitrary function 𝒮 → R. In other words, going from single-

task RL to multi-task RL may be a harder problem, but also has much more structure

to utilize (Figure 4-1).

4.2.3 Quasimetric Models and RL

Quasimetric Models refer to parametrized models of quasimetrics 𝑑𝜃 ∈ Qmet(𝒳 ),

where 𝜃 is the parameter to be optimized. Many recent quasimetric models are based

on neural networks (Chapter 3; Pitis et al. (2020)), can be optimized w.r.t. any

differentiable objective, and can potentially generalize to unseen inputs (due to neural

networks). Many such models can universally approximate any quasimetric and is

capable of learning large-scale and complex quasimetric structures Section 3.6.

An Overview of Quasimetric Models. A quasimetric model 𝑑𝜃 usually consists

of (1) a deep encoder mapping inputs in 𝒳 to a generic latent space R𝑑 and (2) a

differentiable latent quasimetric head 𝑑latent ∈ Qmet(R𝑑) that computes the quasimetric

distance for two input latents. 𝜃 contains both the parameters of the encoder and

parameters of the latent head 𝑑latent, if any. Recent works have proposed many choices

of 𝑑latent, which have different properties and performances. See Section 3.6 for an

in-depth treatment of such models.

Subtleties of Using Quasimetric Models in RL. It is tempting to parametrize

goal-conditioned value functions with quasimetric models in standard RL algorithms,

which optimizes for 𝑉 * ∈ Qmet(𝒮). However, these algorithms usually use temporal-

difference learning or policy iteration, whose success relies on accurate representation

of intermediate results (e.g., on-policy values; Theorem 4.2.1) (Wang et al., 2020,

2021)) that are not quasimetrics. Indeed, simply using quasimetric models in such
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algorithms may yield only minor benefits (Chapter 3) or require significant relaxations

of quasimetric inductive bias (Liu et al., 2022).

Can we directly learn 𝑉 * without those iterative procedures? Fortunately, the

answer is yes, with the help of quasimetrics.

4.3 Quasimetric Reinforcement Learning

Quasimetric Reinforcement Learning (QRL) at its core learns the optimal goal-

conditioned value function 𝑉 * that is parametrized by a quasimetric model 𝑑𝜃 ⊂

Qmet(S).

Similar to many recent RL works (Kumar et al., 2019; Ghosh et al., 2019; Janner

et al., 2022, 2021; Emmons et al., 2021; Chen et al., 2021; Paster et al., 2022; Yang et al.,

2022), our method is derived with the assumption that the environment dynamics 𝑃

are deterministic.

Given ways to sample (e.g., from a dataset / replay buffer)

(

current state

𝑠, 𝑎
action

,

next state

𝑠′, 𝑟
reward≤0

) ∼ 𝑝transition (transitions)

𝑠 ∼ 𝑝state (random state)

𝑠goal ∼ 𝑝goal, (random goal)

QRL optimizes a quasimetric model 𝑑𝜃 as following:

max
𝜃

E𝑠∼𝑝state
𝑔∼𝑝goal

[𝑑𝜃(𝑠, 𝑔)] (4.6)

subject to E(𝑠,𝑎,𝑠′,𝑟)∼𝑝transition [relu(𝑑𝜃(𝑠, 𝑠
′) + 𝑟)2] ≤ 𝜖2,

where 𝜖 > 0 is small, and relu(𝑥) , max(𝑥, 0) prevents 𝑑𝜃(𝑠, 𝑠′) from exceeding the

transition cost −𝑟 ≥ 0.

After optimization, we take −𝑑𝜃 as our estimate of 𝑉 *. Section 4.3.4 discusses

extensions that learn optimal Q-functions 𝑄* and policies, making QRL suitable both
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Figure 4-2: QRL objective finds length of the shortest path connecting two states, i.e., the
optimal value 𝑉 *.

as a standalone RL method or in conjunction with other RL methods.

4.3.1 QRL Learns the Optimal Value Function

By using quasimetric models 𝑑𝜃 to parametrize value functions, we inherently satisfy

the triangle-inequality constraints. What additional constraints should we add in

order to find the optimal value function for a specific MDP?

A Physical Analogy. Consider two objects connected by multiple chains. Each

chain is formed by several links. If we pull them apart , their distance will be limited

by the shortest of all chains. Then, simply measuring the distance between the two

objects gives the length of that “optimal” chain. This argument relies on (1) the

triangle inequality of our Euclidean physical space and (2) that each link of the chains

has a fixed length unaffected by our pulling .

QRL works by the same principles, but in a quasimetric space that both satisfies

the triangle inequality and can capture any asymmetrical MDP dynamics (Figure 4-2):

• Locally, we constrain searching of 𝑉 * to 𝑑𝜃’s that are consistent with local costs,

i.e., not overestimating them:

∀ transition (𝑠, 𝑎, 𝑠′, 𝑟), 𝑑𝜃(𝑠, 𝑠
′) ≤ −𝑟. (4.7)

We ensure this because 𝑑𝜃 should approximate −𝑉 * and

−𝑉 *(𝑠; 𝑠′) ≤ cost of specific path 𝑠
action 𝑎−−−−→ 𝑠′ = −𝑟.
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• Globally, since 𝑑𝜃 is a quasimetric that satisfies the triangle inequality and

Equation (4.7), for every state 𝑠 and goal 𝑔, any path 𝑠→ 𝑔 places a constraint

on 𝑑𝜃(𝑠, 𝑔):

𝑑𝜃(𝑠, 𝑔) ≤ total cost of path connecting 𝑠 to 𝑔.

Optimal cost from 𝑠 to 𝑔 is given by pulling them apart :

max
𝜃
𝑑𝜃(𝑠, 𝑔) = cost of shortest path connecting 𝑠 to 𝑔

= −𝑉 *(𝑠; 𝑔). (4.8)

Optimal quasimetric −𝑉 * achieves this maxima for all (𝑠, 𝑔) pairs. Therefore,

we maximize 𝑑𝜃(𝑠, 𝑔) simultaneously for all (𝑠, 𝑔) pairs:

𝜃* = argmax
𝜃

E𝑠∼𝑝state
𝑔∼𝑝goal

[𝑑𝜃(𝑠, 𝑔)] (4.9)

subject to ∀(𝑠, 𝑎, 𝑠′, 𝑟) transition, 𝑑𝜃(𝑠, 𝑠′) ≤ −𝑟.

This gives exactly the optimal value:

𝑑𝜃*(𝑠, 𝑔) = −𝑉 *(𝑠; 𝑔), ∀𝑠, 𝑔, (4.10)

(assuming that 𝑝state and 𝑝goal having sufficient coverage).

The linear programming characterization of 𝑉 * (Manne, 1960; Denardo,

1970) is similar to Equation (4.9). However, instead of enforcing triangle inequalities

via |𝒜||𝒮|2 constraints, our quasimetric models automatically satisfy them.

Theoretical Guarantees

We now formally state the recovery guarantees for QRL in both the ideal setting (i.e.,

optimizing over entire Qmet(𝒮)) and the function approximation setting.

The proofs of the following results are mostly formalizations of the ideas above.
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All proofs are presented in Appendix C.2.

Theorem 4.3.1 (Exact Recovery). If Equation (4.9) optimizes 𝑑𝜃 over the entire

Qmet(𝒮), then for 𝑠 ∼ 𝑝state, 𝑔 ∼ 𝑝goal, we have 𝑑𝜃*(𝑠, 𝑔) = −𝑉 *(𝑠; 𝑔) almost surely.

In the more realistic case, we use a quasimetric family that is not quite as big as

the entire Qmet(𝒮) but flexible enough to have universal approximation (e.g., IQE

Section 3.6). Using a relaxed constraint, we still have a strong guarantee of recovering

true 𝑉 *, ensuring a small error even for (𝑠, 𝑔) pairs that are far apart.

Theorem 4.3.2 (Function Approximation; Informal). Consider a quasimetric

model family {𝑑𝜃}𝜃 that is a universal approximator of Qmet(𝒮) (in terms of 𝐿∞

error). If we solve Equation (4.9) with a relaxed constraint, where

∀(𝑠, 𝑎, 𝑠′, 𝑟) transition, relu(𝑑𝜃(𝑠, 𝑠
′) + 𝑟) ≤ 𝜖, (4.11)

for small 𝜖 > 0. Then, for 𝑠 ∼ 𝑝state, 𝑔 ∼ 𝑝goal, we have

⃒⃒
𝑑𝜃*(𝑠, 𝑔) + (1 + 𝜖)𝑉 *(𝑠; 𝑔)

⃒⃒
∈ [−

√
𝜖, 0],

i.e., 𝑑𝜃*(𝑠, 𝑔) recovers −𝑉 *(𝑠; 𝑔) up to a known scale, with probability 1 − 𝒪(−
√
𝜖 ·

E[𝑉 *]).

4.3.2 A Practical Implementation

Quasimetric Model. We use Interval Quasimetric Embeddings (IQE; Section 3.6)

as our quasimetric model family {𝑑𝜃}𝜃. IQEs have convincing empirical results in

learning various quasimetric spaces, and enjoy strong approximation guarantees (as

needed in Theorem 4.3.2).

Constrained Optimization is done via dual optimization and jointly updating a

Lagrange multiplier 𝜆 ≥ 0 (Eysenbach et al., 2021). We use a relaxed constraint that

local costs are properly modeled in expectation.
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Figure 4-3: Learned value functions on offline MountainCar. Each plot shows the estimated
values from every state towards a single goal (indicated in the leftmost column) as a 2-
dimensional image (velocity as 𝑥-axis, position as 𝑦-axis). Left: Ground truth distances,
as well as the (expected) distance for the behavior policy that generated training data.
Middle: Learned value functions for single-goal methods. Right: Learned value functions
for multi-goal methods. Only QRL accurately recovers the ground truth distance structure in
both settings, which crucially relies on the asymmetry of quasimetrics. Q-learning methods
generally fail in multi-goal settings. Their learned values, while improved with quasimetric
models, cannot capture the fine details. Contrastive RL only inaccurately estimates the
on-policy values.

Stable Maximization of 𝑑𝜃. In practice, maximizing E[𝑑𝜃(𝑠, 𝑔)] via gradient de-

scent tends to increase the weight norms of the late layers in 𝑑𝜃. This often leads to

slow convergence since 𝜆 needs to constantly catch up. Therefore, we instead place a

smaller weight on distances 𝑑𝜃(𝑠, 𝑔) that are already large and optimize E[𝜑(𝑑𝜃(𝑠, 𝑔))]

, where 𝜑 is a monotonically increasing convex function (e.g., affine-transformed

softplus). This is similar to the discount factor in Q-learning, which causes its MSE

loss to place less weight on transitions of low value.

Full Objective. Putting everything together, we implement QRL to jointly update

(𝜃, 𝜆) according to

min
𝜃

max
𝜆≥0

−E𝑠∼𝑝state
𝑔∼𝑝goal

[𝜑(𝑑IQE
𝜃 (𝑠, 𝑔))] +

𝜆
(︀
E(𝑠,𝑎,𝑠′,𝑟)∼𝑝transition [relu(𝑑

IQE
𝜃 (𝑠, 𝑠′) + 𝑟)2]− 𝜖2

)︀
. (4.12)

94



4.3.3 Analyses and Comparisons via Discretized MountainCar

We empirically analyze QRL and compare to previous works via experiments on the

MountainCar environment with a discretized state space. In this environment, the

agent observes the location and velocity of a car, and controls it to reach the top of a

hill. Due to gravity and velocity, the dynamics are highly asymmetrical. We discretize

the 2-dimensional state space into 160× 160 bins so that we can compute the ground

truth value functions. We collected an offline dataset by running a uniform random

policy, and evaluated the learning result of various methods, including

• QRL, our method;

• Using QRL objective to train a symmetrical ℓ2 distance value function;

• Q-Learning with regular unconstrained Q function class;

• Q-Learning with quasimetric function class;

• Contrastive RL (Eysenbach et al., 2022), which uses a contrastive objective

but estimates on-policy values;

• Contrastive RL with quasimetric function class;

• Conservative Q-Learning (CQL) (Kumar et al., 2020), which regularizes

Q-Learning to reduce over-confidence in out-of-distribution regions;

• Model Standard-deviation Gradients (MSG) (Ghasemipour et al., 2022),

a state-of-the-art offline RL algorithm using an ensemble of up to 64 CQL value

functions to estimate uncertainty and train policy;

• Diffuser (Janner et al., 2022), a representative trajectory modelling methods

with goal-conditioned sampling.

QRL can be used for both single-goal and multi-goal settings by specifying 𝑝goal. For

methods that are not designed for multi-goal settings (MSG and Q-Learning), we

use Hindsight Experience Replay (HER; Andrychowicz et al. (2017)) to train the

goal-conditioned value functions.
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LEFigure 4-4: Learning dynamics on the offline MountainCar setting. Each plot shows the
learned values from every state towards a single goal (indicated at the top) as a 2-dimensional
image (velocity as 𝑥-axis, position as 𝑦-axis). Yellow is greater distance (lower value function).
Bottom row shows the ground truth distances based on true environment dynamics, and
ground truth distances based on transitions appearing in dataset. QRL generally learns the
target value function structures much earlier than Q-learning methods.

Evaluation. Visually, we compare the learned values against ground truths (Fig-

ures 4-3 and 4-4). We test the agents’ control performances in both reaching the

original goal, top of the hill, as well as 9 distinct states (Table 4.1). A diverse set of

goals allows us to evaluate how well the value functions capture the true environment

dynamics structure. For QRL and Q-Learning, agents take the action that greedily

maximizes the estimated value for simplicity. We describe how to obtain Q-values for

QRL later in Section 4.3.4.

Q-Learning is the standard way to train optimal value functions for such discrete-

action space environments. Despite its popularity, many issues have been identified

with its temporal-difference training, such as slow convergence (Lyle et al., 2022;

Fujimoto et al., 2022). Figure 4-4 visualizes the learning dynamics of Q-Learning and

QRL, where vanilla Q-Learning indeed learns very slowly. While using a quasimetric

Q-function helps significantly, QRL still learns the 𝑉 * structure much faster, and

better captures the true target 𝑉 * even after training concludes (Figure 4-3). In

planning (Table 4.1), vanilla Q-Learning and (Q-Learning based) MSG struggle in

multi-goal settings. While Q-Learning with quasimetrics achieves comparable planning
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performance with QRL, the higher-quality 𝑉 * estimate from QRL is likely important

in more complex environments. Furthermore, with continuous action spaces, Q-

Learning requires a jointly learned actor, which (1) reduces to on-policy value learning

and (2) can have complicated training dynamics as the actor’s on-policy values may

not be a quasimetric (Theorem 4.2.1). QRL is exempt from such issues. In later

sections with experiments on online learning in more complex environments, simply

using quasimetric in traditional value training indeed greatly underperforms QRL

(Section 4.5.2).

Contrastive RL uses an arguably similar contrastive objective. However, it samples

positive pairs from the same trajectory, and does not enforce exact representation of

local costs. Hence, it estimates the on-policy values that generated the data (random

actor in this case). Indeed, Figure 4-3 shows that the Contrastive RL value functions

mostly resemble that of a random actor, and fails to capture the boundaries separating

states that have distinct values under optimal actors. As shown in Table 4.1, this

indeed leads to much worse control results.

Ablations. We highlight three ablation studies here:

• Asymmetry. QRL objective with symmetrical value functions underperforms

QRL greatly, suggesting the importance of asymmetry from quasimetrics .

• Optimality. Contrastive RL with quasimetric can be seen as a method that

uses quasimetric to train on-policy values. Thus, the learned values fail to

capture optimal decision structures. QRL instead enforces consistency with

observed local costs and maximal spreading of states, which leads to optimal

values and better performance.

• QRL Objective. While Q-Learning with quasimetrics plans comparably well

here , it learns more slowly than QRL (Figure 4-4) and fails to capture finer

value function details (Figure 4-3). As discussed above, Q-Learning (with or

without quasimetrics) also has potential issues with complex dynamics and/or
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Method Method
Configuration

Task

Reach Top of Hill Reach 9 States

QRL Single-Goal 97.69 ± 0.26 —
Multi-Goal 95.89 ± 0.55 85.55 ± 3.57

Q-Learning — 98.74 ± 0.19 —
+ Relabel 89.27 ± 11.69 22.06 ± 8.72

Contrastive RL — 83.91 ± 8.04 53.75 ± 32.93

MSG — 97.44 ± 0.22 —
+ Relabel 14.30 ± 0.00 37.80 ± 8.20

Diffuser — 19.78 ± 3.03 36.41 ± 1.44

QRL Objective
with Symmetric ℓ2 Distance

Single-Goal 95.42 ± 0.16 —
Multi-Goal 96.13 ± 0.12 73.27 ± 0.84

Contrastive RL
+ Quasimetric Q-Function — 83.90 ± 8.73 72.28 ± 4.63

Q-Learning
+ Quasimetric Q-Function + Relabel 96.33 ± 0.37 85.53 ± 3.69

Oracle (Full Dynamics) — 100.00 100.00
Oracle (Dataset Transitions) — 69.22 75.89

Table 4.1: Control results on MountainCar. Scores are normalized returns to reach the
desired goal within 200 steps, averaged across all 160× 160 starting states. Each row shows
evaluations of a method in a specific configuration with standard deviations from 5 seeds.
We highlight results that are ≥ 95% of the best method.

continuous action space, while QRL does not have such problems and attain

much superior performance in such settings (see later Section 4.5.2).

Compared to existing approaches, QRL efficiently and accurately finds optimal

goal-conditioned value functions, showing the importance of both the quasimetric

structure and the novel learning objective. In the next section, we describe extensions

of QRL, followed by more extensive experiments on offline and online goal-reaching

benchmarks in Section 4.5.

4.3.4 From 𝑉 * to 𝑄* and Policy

QRL’s optimal value 𝑉 * estimate may be used directly in planning to control an agent.

A more common approach is to train a policy network w.r.t. to a Q-function estimate

(Hafner et al., 2019a). This section describes simple extensions to QRL that learn the

optimal Q-function 𝑄* and a policy.
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Transition and Q-Function Learning. We augment the quasimetric model 𝑑𝜃 to

include an encoder 𝑓 : 𝒮 → 𝒵:

𝑑𝜃=(𝜃1,𝜃2)(𝑠0, 𝑠1) , 𝑑𝑧𝜃1(𝑓𝜃2(𝑠0), 𝑓𝜃2(𝑠1)). (4.13)

Since 𝑑𝜃 captures 𝑉 *, finding the Q-function 𝑄*(𝑠, 𝑎; 𝑔) only requires knowing the

transition result, which we model by a learned latent transition 𝑇 : 𝒵 ×𝒜 → 𝒵. In

this section, for notation simplicity, we will drop the ()𝜃* subscript, and use 𝑧 , 𝑓(𝑠),

𝑧′ , 𝑓(𝑠′), 𝑧′ , 𝑇 (𝑧, 𝑎), and 𝑧𝑔 , 𝑓(𝑔).

Once with a well trained 𝑇 , we can estimate 𝑄*(𝑠, 𝑎; 𝑔) as

𝑑𝑧(𝑇 (𝑧, 𝑎)

latent transition

, 𝑧𝑔) − 𝑟

transition cost

= 𝑑𝑧(𝑧′, 𝑧𝑔)− 𝑟 ≈ −𝑄*(𝑠, 𝑎; 𝑔). (4.14)

(In our experiments, transition cost −𝑟 is a constant, and thus omitted. Generally, 𝑇

can be extended to estimate 𝑟.)

Transition loss. Given transition (𝑠, 𝑎, 𝑠′), we define:

ℒtransition(𝑠, 𝑎, 𝑠
′;𝑇, 𝑑𝜃) ,

1

2

(︀
𝑑𝑧(𝑧′, 𝑧′)2 + 𝑑𝑧(𝑧′, 𝑧′)2

)︀
,

which is used to optimize both 𝑑𝜃 and 𝑇 in conjunction with the QRL objective in

Equation (4.12).

ℒtransition encourages the predicted next latent 𝑧′ to be close to the actual next

latent 𝑧′ w.r.t. the learned quasimetric function 𝑑𝑧. This is empirically superior to a

simple regression loss on 𝒵, whose scale is meaningless.

More importantly, the quasimetric properties allow us to directly relate ℒtransition

values to Q-function error:

Suppose 𝑑𝑧(𝑧′, 𝑧′)2 + 𝑑𝑧(𝑧′, 𝑧′)2 ≤ 𝛿2, which means

𝑑𝑧(𝑧′, 𝑧′) ≤ 𝛿 and 𝑑𝑧(𝑧′, 𝑧′) ≤ 𝛿. (4.15)
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For any goal 𝑔 with latent 𝑧𝑔, the triangle inequality implies

|𝑑𝑧(𝑧′, 𝑧𝑔)
estimated 𝑄*(𝑠,𝑎;𝑔)

− 𝑑𝜃(𝑠
′, 𝑔)

estimated 𝑉 *(𝑠′;𝑔)

| = |𝑑𝑧(𝑧′, 𝑧𝑔)− 𝑑𝑧(𝑧′, 𝑧𝑔)| ≤ 𝛿.

In other words, if 𝑑𝜃 accurately estimates 𝑉 *, our estimated 𝑄*(𝑠, 𝑎; 𝑔) has bounded

error, for any goal 𝑔, even though we train with a local objective ℒtransition. Hence,

simply training the transition loss locally ensures that Q-function error is bounded

globally, thanks to using quasimetrics .

Based on this argument, our theoretical guarantees for recovering 𝑉 * (Theo-

rems 4.3.1 and 4.3.2) can be potentially extended to 𝑄* and thus to optimal policy.

We leave this as future work.

Policy Learning. We train policy 𝜋 : 𝒮 → Δ(𝒜) to maximize the estimated Q-

function (Equation (4.14)):

min
𝜋

E𝑠∼𝑝state
𝑔∼𝑝goal

[𝑑𝑧(𝑇 (𝑓(𝑠), 𝑎), 𝑓(𝑔))]. (4.16)

Additionally, we follow standard RL techniques, training two critic functions and

optimizing the policy to maximize rewards from the minimum of them (Fujimoto and

Gu, 2021; Eysenbach et al., 2022). In online settings, we also use an adaptive entropy

regularizer (Haarnoja et al., 2018).

4.4 Related Work

Contrastive Approaches to RL. As discussed in Section 4.1, our objective bears

similarity to those of contrastive approaches. However, we also differ with them in

that we rely on (1) quasimetric models , (2) consistency with observed local costs , and

(3) maximal spreading of states to learn the optimal value function. Most contrastive

methods satisfy none of these properties, and instead pull together states sampled

from the same trajectory for capturing on-policy value/information (Eysenbach et al.,

2022; Ma et al., 2022; Sermanet et al., 2018; Oord et al., 2018). Yang et al. (2020)
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ensures exact representation of local cost, but also enforces non-adjacent states to

have distance 2 via a metric function, and thus cannot learn optimal values. Another

related line of work trains contrastive models to estimate the alignment between

current state and some abstract goal (e.g., text), which are then used as reward for

RL training (Fan et al., 2022). Despite the similar goal-reaching setting, their trained

model is potentially sensitive to training data, and estimates a density ratio rather

than the optimal cost-to-go.

Quasimetric Approaches to RL. Micheli et al. (2020) consider using quasimetrics

for multi-task planning, but does not use models that enforce quasimetric properties.

Liu et al. (2022) use quasimetric models to parametrize the Q-function, and shows

improved performance with DDPG (Lillicrap et al., 2015) and HER (Andrychowicz

et al., 2017) on goal-reaching tasks. These prior works mostly only estimate on-policy

value functions, and rely on iterative policy improvements to train policies. Zhang

et al. (2020b) use a similar quasimetric definition, but does not use quasimetric

models and focuses on hierarchy learning. In contrast, our work utilizes the full

quasimetric geometry to directly estimate 𝑉 * and produce high-quality goal-reaching

agents. Additionally, the Wasserstein-1 distance induced by the MDP dynamics is

also a quasimetric. Durugkar et al. (2021) utilize its dual form to derive a similar

training objective for reward shaping, but essentially employ a different 1-dimensional

Euclidean geometry for each goal state and forgo much of the quasimetric structure in

𝑉 *.

Metrics and Abstractions in RL. Many works explored learning different state-

space geometric structures. In particular, bisimulation metric also relates to optimality,

but is defined for single tasks where its metric distance bounds the value difference

Castro (2020); Ferns and Precup (2014); Zhang et al. (2020a). Generally speaking,

any state-space abstraction can be viewed as a form of distance structure, including

state embeddings that are related to value functions (Schaul et al., 2015; Bellemare

et al., 2019), transition dynamics (Mahadevan and Maggioni, 2007; Lee et al., 2020),

factorized dynamics (Chapter 5; (Fu et al., 2021)), etc. While our method also uses
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Environment QRL Contrastive RL MSG
(#critic = 64)

MSG + HER
(#critic = 64)

MPPI with
GT Dynamics

MPPI with
QRL Value Diffuser Diffuser with

QRL Value Guidance
Diffuser with

Handcoded Controller

Single-Goal

large 191.52 ± 18.28 81.65 ± 43.79 159.30 ± 49.40 59.26 ± 46.70 5.1 19.32 ± 22.97 7.98 ± 1.54 10.08 ± 2.97 128.13 ± 2.59

medium 163.59 ± 9.70 10.11 ± 0.99 57.00 ± 17.20 75.77 ± 9.02 10.2 58.06 ± 42.79 9.48 ± 2.21 10.71 ± 4.59 127.64 ± 1.47

umaze 71.72 ± 26.21 95.11 ± 46.23 101.10 ± 26.30 55.64 ± 31.82 33.2 74.85 ± 21.30 44.03 ± 2.25 42.30 ± 3.87 113.91 ± 3.27

Average 142.27 62.29 105.80 63.56 16.17 50.74 20.50 21.03 123.23

Multi-Goal

large 187.71 ± 7.62 172.64 ± 5.13 — 44.57 ± 25.30 8 37.73 ± 16.67 13.09 ± 1.00 21.26 ± 2.95 146.94 ± 2.50

medium 150.51 ± 3.77 137.01 ± 6.26 — 99.76 ± 9.83 15.4 56.79 ± 7.66 19.21 ± 3.56 33.39 ± 2.78 119.97 ± 1.22

umaze 150.60 ± 5.32 142.43 ± 11.99 — 27.90 ± 10.39 41.2 87.49 ± 9.72 56.22 ± 3.90 69.96 ± 2.39 128.53 ± 1.00

Average 162.94 150.69 — 57.41 21.53 60.67 29.51 41.54 131.81

Table 4.2: Planning results on maze2d. Scores represent average normalized episode return,
where 100 represents comparable performance with the d4rl reference handcoded controller.
Each column show evaluations of the same method configuration. E.g., we train goal-reaching
QRL agents and evaluate them in both single-goal and multi-goal settings. We highlight
results that are ≥ 95% of the best method. In both evaluations, QRL agents significantly
outperform baselines, including MSG + HER with the ground truth reward function, and
MPPI with the ground truth environment dynamics. QRL value functions can also be used
with planning methods (MPPI) or trajectory sampling methods (Diffuser), and improve their
performances. MPPI with GT Dynamics scores are copied from Janner et al. (2022).

an encoder, our focus is to learn a quasimetric that directly outputs the optimal value

𝑉 * to reach any goal, rather than bounding it for a single task.
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Figure 4-5: Online learning performance on GCRL benchmarks. No method has access to
ground truth reward function. QRL learns faster and better than the baseline methods
across all environments for both state-based and image-based observations.

4.5 Benchmark Experiments

We evaluate QRL learned policies on standard goal-reaching benchmarks in both

offline and online settings. All results show means and standard deviations from 5

seeds. See Appendix C.3 for all experiment details.
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4.5.1 Offline Goal-Reaching d4rl maze2d

Following Diffuser (Janner et al., 2022), we use maze2d environments from d4rl (Fu

et al., 2020), and evaluate the learned policies’ performance in (1) reaching the original

fixed single goal defined in d4rl as well as (2) reaching goals randomly sampled from

the state space. Similar to many offline works (e.g., Contrastive RL (Eysenbach et al.,

2022)), we adopt an additional behavior cloning loss for QRL policy optimization in

this offline setting.

QRL is a strong method for offline goal-reaching RL. In Table 4.2, QRL

significantly outperforms all baselines in both single-goal and multi-goal settings.

MSG uses a 64-critic ensemble and is computationally expensive. With only 2 critics,

QRL outperforms MSG by 20% on single-goal tasks and 188% on multi-goal tasks.

The Diffuser original paper reported results from a handcoded controller with sampled

states as input waypoints. We also report planning using Diffuser’s sampled actions,

which attains a much worse result. Regardless, QRL outperforms both Diffuser settings,

without using any external information/controller. Compared with Contrastive RL,

QRL again sees a big improvement, especially in the single-goal setting. Since the

dataset is not generated by agents trying to reach that goal, the on-policy values

estimated by Contrastive RL are likely much worse than the optimal values from QRL.

QRL learned value function improves planning and trajectory sampling

methods. Given the high quality of QRL value functions, we can use it to improve

other methods. MPPI (Williams et al., 2015) is a model-based planning method.

When planning with QRL Q-function, MPPI greatly improves over using ground

truth dynamics. We also experiment using QRL Q-function to guide Diffuser’s goal-

conditioned sampling, and obtain consistent and non-trivial improvements, especially

in multi-goal settings.
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4.5.2 Online Goal-Reaching RL

Following Contrastive RL (Eysenbach et al., 2022) and Metric Residual Networks

(MRN; Liu et al. (2022)), we use the Fetch robot environments from the GCRL

benchmark (Plappert et al., 2018), where we experiment with both state-based

observation as well as image-based observation.

QRL quickly achieves high performance in online RL. Across all environ-

ments, QRL exhibits strong sample-efficiency, and learns the task much faster than

the alternatives. Only QRL and Contrastive RL learn in the two more challenging

state-based settings, FetchPush and FetchSlide. Compared to Contrastive RL, QRL

has 4.9× sample efficiency on state-based FetchPush and 2.7× sample efficiency on

state-based FetchSlide. Strictly speaking, image-based observation only contains

partial information of the true state, and thus has stochastic dynamics, which violates

the assumption of QRL. However, QRL still shows strong performance on image-

based settings, suggesting that QRL can potentially also be useful in other partially

observable and/or stochastic environments.

QRL outperforms Q-Learning with quasimetric models in complex envi-

ronments. Following the approach by Liu et al. (2022), we train standard DDPG

(Lillicrap et al., 2015) with relabelling and a quasimetric model Q-function. Essentially,

this jointly optimizes a quasimetric Q-function with Q-Learning and a deterministic

policy w.r.t. the Q-function. While similar approaches worked well on the simple

MountainCar environment (Section 4.3.3), they fail miserably here on more complex

continuous-control settings, as Q-Learning must estimate on-policy Q-function that

may not be a quasimetric (Theorem 4.2.1). DDPG with quasimetrics are the slowest

to learn on state-based FetchReach, and generally are among the least-performing

methods. The same pattern holds for two different quasimetric models: IQE and

MRN (proposed also by Liu et al. (2022)). In comparison, QRL (which also uses IQE

in our implementation) quickly learns the tasks. QRL is more general and scales far

better than simply using Q-Learning with quasimetrics.
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4.6 Implications

In this work, we introduce a novel RL algorithm, QRL, that utilizes the equivalence

between optimal value functions and quasimetrics. In contrast to most RL algorithms

that optimize generic function classes, QRL is designed for using quasimetric models

to parametrize value functions. Combining quasimetric models with an objective that

captures local distances and maximally spreads out states (Section 4.3.1), QRL provably

recovers the optimal value function (Section 4.3.1) without temporal-difference or

policy iteration, making it distinct from many prior approaches.

From thorough analyses on MountainCar, we empirically confirm the importance

of different components in QRL, and observe that QRL can learn value functions

faster and better than alternatives (Section 4.3.3). Our experiments on additional

benchmarks echo these findings, showing better control results in both online and

offline settings (Section 4.5). QRL can also be used to directly improve other RL

methods, and demonstrates strong sample efficiency in online settings.

These QRL results highlight the usefulness of quasimetrics in RL, as well as the

benefit of incorporating quasimetric structures into designing RL algorithms.

Below we summarize several exciting future directions.

QRL as Representation and World Model Learning. QRL can be also viewed

as learning a decision-aware representation (via encoder 𝑓) and a latent world model

(via latent dynamics 𝑇 ). In this work, for fair comparison, we did not utilize such

properties much. However, combining QRL with techniques from these areas (e.g., esti-

mating multi-step return, auxiliary loss training) may yield even stronger performances

and/or more general QRL variants (e.g., better support for partial observability and

stochasticity).

Quasimetric Structures in Searching and Exploration. QRL results show

that quasimetrics can flexibly model distinct environments and greatly boost sample

efficiency. Such learned (asymmetrical) state-space distances potentially have further

uses in long-range planning and exploration. A locally distance-preserving quasimetric
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is always a consistent and admissible heuristic (Pearl, 1984), which guarantees op-

timality in search algorithms like A* (Hart et al., 1968). Perhaps such exploration

ideas may be incorporated in a quasimetric-aware actor, or even for solvers of general

searching and planning problems.

Better Exploration for Structure Learning. In our and most RL works, online

exploration is done via noisy actions from the learned policy. Arguably, if an agent

is learning the structure of the environment, it should instead smartly and actively

probe the environment to improve its current estimate. Consider QRL as an example.

If current quasimetric estimate 𝑑𝜃(𝑠0, 𝑠1) is small but no short path connecting 𝑠0 to

𝑠1 was observed, the agent should test if they are actually close w.r.t. the dynamics.

Additionally, one may use uncertainty/errors in learned quasimetric distances/dynam-

ics to derive new intrinsic exploration methods. Such advanced exploration may speed

up learning the geometric structures of the world, and thus better generalist agents.

More Quasimetric-Aware RL Algorithms. To our best knowledge, QRL is the

first RL method designed for quasimetric models. We hope the strong performance of

QRL can inspire more work on RL algorithms that are aware of quasimetric and/or

other geometric structures in RL.
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Chapter 5

Denoised MDPs: Learning Latent

World Models Better Than the World

Itself

Quasimetric Reinforcement Learning (QRL) solves a given decision-making task

(Chapter 4), but it is only a half of the problem. The arguably more important half is

to formulate which decision-making task to solve.

The ability to separate signal from noise, and reason with clean abstractions, is

critical to intelligence. With this ability, humans can efficiently perform real world

tasks without considering all possible nuisance factors. How can artificial agents

do the same? What kind of information can agents safely discard as noises? In

this chapter, we categorize information out in the wild into four types based on

controllability and relation with reward, and formulate useful information as that

which is both controllable and reward-relevant. This framework clarifies the kinds

information removed by various prior work on representation learning in reinforcement

learning (RL), and leads to our proposed approach of learning a Denoised MDP in

a representation space that explicitly factors out certain noise distractors. Instead

of trying to solve the noisy real world, decision-making w.r.t. this Denoised MDP is

thus much simpler, more efficient and also more effective. Extensive experiments on

variants of DeepMind Control Suite and RoboDesk demonstrate superior performance

107



of our denoised world model over using raw observations alone, and over prior works,

across policy optimization control tasks as well as the non-control task of joint position

regression.

This chapter is based on published work:

1. Denoised MDPs: Learning World Models Better Than the World Itself with

co-authors Simon S. Du, Antonio Torralba, Phillip Isola, Amy Zhang, and

Yuandong Tian at the International Conference on Machine Learning (ICML)

2022 (Wang et al., 2022).

5.1 Introduction

The real world provides us a plethora of information, from microscopic physical inter-

actions to abstracted semantic signals such as the latest COVID-19 news. Fortunately,

processing each and every signal is unnecessary (and also impossible). In fact, any

particular reasoning or decision often only relies on a small portion of information.

Imagine waking up and wanting to embrace some sunlight. As you open the curtain,

a nearby resting bird is scared away and you are pleasantly met with a beautiful sunny

day. Far away, a jet plane is slowly flying across the sky.

This may seem a simple activity, but in fact highlights four distinct types of

information (see Figure 5-1), with respect to the goal of letting in as much sunlight as

possible:

• Controllable and reward-relevant: curtain, influenced by actions and affect-

ing incoming sunlight;

• Controllable and reward-irrelevant: bird, influenced by actions but not

affecting sunlight;

• Uncontrollable and reward-relevant: weather, independent with actions

but affecting sunlight;

• Uncontrollable and reward-irrelevant: plane, independent with both ac-

tions and the sunlight.
Our optimal actions towards the goal, however, only in fact depend on information
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(a) GOAL: Letting in as much sunlight as possible.

Denoise

Uncontrollable

Controllable

Reward-
Relevant

Reward-
Irrelevant

(b) Optimal control only relies on information that is both 
controllable and reward-relevant. Good world models 
should ignore other factors as noisy distractors.

Figure 5-1: Illustrative example: (a) Four distinct kinds of information in the scenario
described in Section 5.1, where the person desires to increase the amount of sunlight let into
the room. Their opening of the curtain scares away the bird. (b) A denoised world model
only includes a small subset of all information.
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that is controllable and reward-relevant, and the three other kinds of information

are merely noise distractors. Indeed, no matter how much natural sunlight there is

outside, or how the plane and the bird move, the best plan is always to open up the

curtain.

When performing a particular task, we humans barely think about the other three

types of information, and usually only plan on how our actions affect information

that is controllable and reward-relevant. Our mental model is an abstract and

condensed version of the real world that is actually better suited for the task.

The notion of better model/data is ubiquitous in data science and machine learning.

Algorithms rarely perform well on raw noisy real data. The common approach is to

perform data cleaning and feature engineering, where we manually select the useful

signals based on prior knowledge and/or heuristics. Years of research have identified

ways to extract good features for computer vision (Lowe, 1999; Donahue et al., 2014),

natural language processing (Elman, 1990; Mikolov et al., 2013), reinforcement learning

(RL) (Mahadevan and Maggioni, 2007; Bellemare et al., 2019), etc. Similarly, system

identification aligns real observation with a predefined set of abstract signals/states.

Yet for tasks in the wild (in the general form of (partially observable) Markov Decision

Processes), there can be very little prior knowledge of the optimal set of signals. In

this work, we ask: can we infer and extract these signals automatically, in the form of

a learned world model?

The general idea of a mental world model have long been under active research in

philosophy and social science (Craik, 1952; Dennett, 1975), cognitive science, where an

intuitive physics model is hypothesized to be core in our planning capabilities (Spelke

and Kinzler, 2007), and in reinforcement learning, where various methods investigate

state abstractions for faster and better learning (Sutton, 1991, 1981).

In this work, we explore this idea within the context of machine learning and rein-

forcement learning, where we aim to make concrete the different types of information

in the wild, and automatically learn a world model that removes noise distractors and

is beneficial for both control (i.e., policy optimization) and non-control tasks. Toward

this goal, our contributions are
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Figure 5-2: MDP transition structures consisting of dynamics and reward functions. Unlike
the regular structure of (a), (b, c) factorized (yet still general) structures inherently separate
information into controllable (Ctrl) versus uncontrollable (Ctrl), and reward-relevant (Rew)
versus reward-irrelevant (Rew). Presence of a variable in a cell means possible containing of
respective information. E.g., in (c), 𝑧 can only contain reward-irrelevant information. In
(b, c), the 𝑥 dynamics form an MDP with less noise and sufficient for optimal planning. Our
Denoised MDP (see Section 5.3) is based on these two factorizations.

• We categorize information into four distinct kinds as in Figure 5-1, and review

prior approaches under this framework (Section 5.2).

• Based on the above framework, we propose Denoised MDPs, a method for

learning world models with certain distractors removed (Section 5.3).

• Through experiments in DeepMind Control Suite and RoboDesk environments,

we demonstrate superior performance of policies learned our method, across

many distinct types of noise distractors (Sections 5.5.1 and 5.5.2).

• We show that Denoised MDP is also beneficial beyond control objectives, im-

proving the supervised task of robot joint position regression (Section 5.5.1).

5.2 Different Types of Information in the Wild

In Section 5.1, we illustrated the four types of information available in the wild w.r.t.

a task. Here we make these notions more concrete, and relate them to existing works.

For generality, we consider tasks in the form of Markov Decision Processes (MDPs),
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described in the usual manner: ℳ , (𝒮,𝒜, 𝑅, 𝑃, 𝑝𝑠0) (Puterman, 1994), where 𝒮 is

the state space, 𝒜 is the action space, 𝑅 : 𝒮 → Δ([0, 𝑟max]) defines the reward random

variable 𝑅(𝑠′) received for arriving at state 𝑠′ ∈ 𝒮, 𝑃 : 𝒮 ×𝒜 → Δ(𝒮) is the transition

dynamics, and 𝑝𝑠0 ∈ Δ(𝒮) defines the distribution of initial state. We use Δ(𝐴)

to denote the set of all distributions over 𝐴. 𝑃 and 𝑅 define the most important

components of a MDP: the transition dynamics P[𝑠′ | 𝑠, 𝑎] and the reward function

P[𝑟 | 𝑠′]. Usually, the objective is to find a policy 𝜋 : 𝒮 → Δ(𝒜) acting based on

current state, that maximizes the expected cumulative (discounted) reward.

Indeed, MDPs provide a general formulation that encompasses many tasks. In fact,

the entire real world may be viewed as an MDP with a rich state/observation space 𝒮

that contains all possible information/signal. For an artificial agent to successfully

perform real world tasks, it must be able to process observations that are incredibly

rich and high-dimensional, such as visual or audio signals.

We characterize different types of information in such observations by considering

two intuitive notions of “noisy and irrelevant” signals: (1) uncontrollable information

and (2) reward-irrelevant information. Such factors can often be ignored without

affecting optimal control, and are referred to as noise distractors.

To understand their roles in MDPs, we study different formulations of the transition

dynamics and reward functions, and show how different structures naturally leads to

decompositions that may help identify such distractors. Removing these distractors

can thus transform the original noisy MDP to a clean denoised one, to be used in

downstream tasks.

For starters, the most generic transition model in Figure 5-2a has little to no

structure. The state 𝑠 can contain both the useful signals and noise distractors.

Therefore, it is not directly useful for extracting important information.

5.2.1 Controllability

Intuitively, if something is not controllable, an agent might be able to do well without

considering it. Yet it is not enough to only require some variable to be unaffected by

actions (e.g., wind directions should not be ignored while sailing). Instead, we focus
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on factors that simply evolve on their own, without influencing or being influenced by

others.

Not all such information can be safely ignored, as they still may affect reward

(e.g., traffic lights when driving). Fortunately, in the usual objective of maximizing

expected return, we can ignore ones that only additively affect reward.

Concretely, if an MDP transition can be represented in the form of Figure 5-2b, we

say variables 𝑦𝑅 and 𝑦𝑅 are uncontrollable information, as they evolve independently

of actions and do not affect controllable 𝑥. Here 𝑦𝑅 (additively) affects reward, but

can be ignored. One can safely discard both 𝑦𝑅 and 𝑦𝑅 as noise distractors. Operating

with the compressed MDP of only 𝑥 is sufficient for optimal control.

5.2.2 Reward-Relevance

Among controllable information, there can still be some that is completely unrelated to

reward. In Figure 5-1, the bird is affected by the opening curtain, but is irrelevant to

the task of letting in sunlight. In such cases, the information can be safely discarded,

as it does not affect the objective.

If an MDP transition can be represented in the form of Figure 5-2c, we say 𝑧 is

reward-irrelevant because it evolves by potentially using everything (i.e., all latent

variables and actions), but crucially does not affect anything but itself.

Similar to uncontrollable information, 𝑧 (and 𝑦) is a noise distractor that can be

discarded. The compressed MDP of only 𝑥 contains all signals needed for optimal

control.

5.2.3 Which Information Do Existing Methods Learn?

In RL, many prior work have explored state abstractions in some form. Here we cast

several representative ones under the framework described above, and show which

kinds of information they learn to remove, summarized in Figure 5-3, together with

our proposed method (explained in Section 5.3). Below we discuss each prior work in

detail.
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Figure 5-3: Categorization of information learned and removed by various methods with
distinct formulations.

Reconstruction-Based Model-Based RL. Many model-based RL methods learn

via reconstruction from a single latent code, often as a result of a variational formulation

(Hafner et al., 2019a,b; Lee et al., 2019). The latent code must try to compress all

information present in the observation, and necessarily contains all types of information.

Bisimulation. Bisimulation defines a state abstraction where states aggregated

together must have the same expected return and transition dynamics up to the

abstraction (Givan et al., 2003), and is known to optimally ignore reward-irrelevant

information (Ferns et al., 2004). While its continuous version, bisimilation metric, is

gaining popularity, learning them is computationally difficult (Modi et al., 2020). Even

with many additional assumptions, it is generally only possible to learn an on-policy
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variant that loses the above guarantee (Castro, 2020; Zhang et al., 2020a).

Task Informed Abstractions (TIA). TIA (Fu et al., 2021) extends Dreamer by

modelling two independent latent MDPs, representing signal and noise. The noise

latent is enforced to be independent with reward and reconstruct the observation as

well as possible. Reconstructions from each latent are composed together using an

inferred mask in pixel-space, to form the full reconstruction for the reconstruction loss.

Because of its special structure, TIA can remove reward-irrelevant noise distractors

that are present via pixel-wise composing two images from independent processes (e.g.,

agent moving on a noisy background), but not general ones (e.g., a shaky camera

affecting both the agent and the noisy background).

Predictive Information, Data Augmentation, etc. Another set of researches

learn state representation that only contains information useful for predicting future

states (e.g., CPC (Oord et al., 2018) and PI-SAC (Lee et al., 2020)) or augmented

views of the current state (e.g., CURL (Laskin et al., 2020a)). These methods do not

guarantee removal of any of the three redundant piece of information identified above.

Non-i.i.d. noises (e.g., people moving in background) are predictive of future and may

be kept by CPC and PI-SAC. The performance of augmentation-based methods can

critically rely on specific types of augmentation used and relevance to the tasks. As

we show in experiments (see Section 5.5), indeed they struggle to handle certain noise

types.

5.2.4 Possible Extensions to Further Factorizations

The above framework is sufficient for characterizing most prior work and related tasks,

and can also be readily extended with further factorized transition structures. E.g.,

if an independent process confounds a signal process and a noise process, fitting the

Figure 5-2c structure must group all three processes into 𝑥 (to properly model the

dependencies). However, a further factorization shows that only considering the signal

and the confounding processes is theoretically sufficient for control. We leave such
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extensions as future work.

5.3 Denoised MDPs

Figures 5-2b and 5-2c show two special MDP structures that automatically identify

certain information that can be ignored, leaving 𝑥 as the useful information (which

also forms an MDP). This suggests a naïve approach: directly fitting such structures

to collected trajectories, and then extract 𝑥.

However, the same MDP dynamics and rewards can be decomposed as Figures 5-

2b and 5-2c in many different ways. In the extreme case, 𝑥 may even contain all

information in the raw state 𝑠, and such extraction may not help at all. Instead, we

desire a fit with the minimal 𝑥, defined as being least informative of 𝑠 (so that removal

of the other latent variables discards the most information possible). Concretely, we

aim for a fit with least 𝐼({𝑥𝑡}𝑇𝑡=1; {𝑠𝑡}𝑇𝑡=1 | {𝑎𝑡}𝑇𝑡=1), the mutual information 𝑥 contains

about 𝑠 over 𝑇 steps. Then from this fit, we can extract a minimal Denoised MDP

of only 𝑥. For notation simplicity, we use bold symbols to denote variable sequences,

and thus write, e.g., 𝐼(𝑥; 𝑠 | 𝑎).

Practically, we consider regularizing model-fitting with 𝐼(𝑥; 𝑠 | 𝑎). As we show

below, this amounts to a modification to the well-established variational objective

(Hafner et al., 2019a). The resulting method is easy-to-implement yet effective, enabling

clean removal of various noise distractors the original formulation cannot handle (see

Section 5.5).

We instantiate this idea with the structure in Figure 5-2c. The Figure 5-2b

formulation can be obtained by simply removing the 𝑧 components and viewing 𝑦 as

combined 𝑦𝑅 and 𝑦𝑅.
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The transition structure is modeled with components:

𝑝
(𝑥𝑡)
𝜃 , 𝑝𝜃(𝑥𝑡 | 𝑥𝑡−1, 𝑎) (𝑥 dynamics)

𝑝𝜃(𝑟𝑥 | 𝑥𝑡) (𝑥 reward)

𝑝
(𝑦𝑡)
𝜃 , 𝑝𝜃(𝑦𝑡−1 | 𝑦𝑡−1) (𝑦 dynamics)

𝑝𝜃(𝑟𝑦 | 𝑦𝑡) (𝑦 reward)

𝑝
(𝑧𝑡)
𝜃 , 𝑝𝜃(𝑧𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑧𝑡−1, 𝑎) (𝑧 dynamics)

𝑝𝜃(𝑠𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑧𝑡). (obs. emission)

Consider training data in the form of trajectory segments 𝑠,𝑎, 𝑟 sampled from some

data distribution 𝑝data (e.g., stored agent experiences from a replay buffer). We perform

model learning by minimizing the negative log likelihood:

ℒMLE(𝜃) , −E𝑠,𝑎,𝑟∼𝑝data
[︀
log 𝑝𝜃 (𝑠, 𝑟 | 𝑎)

]︀
.

To obtain a tractable form, we jointly learn three variational posterior components

(i.e., encoders):

𝑞
(𝑥𝑡)
𝜓 , 𝑞𝜓(𝑥𝑡 | 𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1, 𝑠𝑡, 𝑎𝑡) (𝑥 posterior)

𝑞
(𝑦𝑡)
𝜓 , 𝑞𝜓(𝑦𝑡 | 𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1, 𝑠𝑡, 𝑎𝑡) (𝑦 posterior)

𝑞
(𝑧𝑡)
𝜓 , 𝑞𝜓(𝑧𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝑎𝑡), (𝑧 posterior)

whose product defines the posterior 𝑞𝜓(𝑥,𝑦, 𝑧 | 𝑠,𝑎)1. We choose this factorized form

based on the forward (prior) model structure of Figure 5-2c.

Then, the model can be optimized w.r.t. the standard variational bound on log

1Following Dreamer (Hafner et al., 2019a), we define posterior of first-step latents 𝑞𝜓(𝑥1, 𝑦1, 𝑧1 |
𝑠1) , 𝑞𝜓( · , · , · | 0,0,0, 𝑠1,0), where 0 is the all zeros vector of appropriate size.
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likelihood:

ℒMLE(𝜃) = min
𝜓

E
𝑠,𝑎,𝑟

E
𝑥,𝑦,𝑧∼

𝑞𝜓(·|𝑠,𝑎,𝑟)

[︂
− log 𝑝𝜃(𝑠, 𝑟 | 𝑥,𝑦, 𝑧,𝑎)⏟  ⏞  

, ℒrecon(𝜃, 𝜓)

+

𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑥𝑡)
𝜓

⃦⃦
𝑝
(𝑥𝑡)
𝜃

)︀
⏟  ⏞  
, ℒKL-𝑥(𝜃, 𝜓)

+

𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑦𝑡)
𝜓

⃦⃦
𝑝
(𝑦𝑡)
𝜃

)︀
⏟  ⏞  
, ℒKL-𝑦(𝜃, 𝜓)

+
𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑧𝑡)
𝜓

⃦⃦
𝑝
(𝑧𝑡)
𝜃

)︀
⏟  ⏞  
, ℒKL-𝑧(𝜃, 𝜓)

]︂
, (5.1)

where equality is attained by optimal 𝑞𝜓 that is compatible with 𝑝𝜃, i.e., 𝑞𝜓 is the

exact posterior of 𝑝𝜃.

The mutual information regularizer 𝐼(𝑥; 𝑠 | 𝑎), using a variational formulation,

can be written as

𝐼(𝑥; 𝑠 | 𝑎) = min
𝜃

ℒKL-𝑥(𝜃, 𝜓), (5.2)

with equality attained when 𝑞𝜓 and 𝑝𝜃 are compatible. The appendix describes this

derivation in detail.

Therefore, for a regularizer weight of 𝑐 ≥ 0, we can optimize Equations (5.1)

and (5.2) together as

min
𝜃

ℒMLE(𝜃) + 𝑐 · 𝐼(𝑥; 𝑠 | 𝑎)

= min
𝜃,𝜓

ℒrecon(𝜃, 𝜓) + (1 + 𝑐) · ℒKL-𝑥(𝜃, 𝜓)

+ ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧(𝜃, 𝜓). (5.3)

Recall that we fit to the true MDP with the structure of Figure 5-2c, which inherently

guarantees all useful information in the 𝑥 latent variable. As the regularizer ensures

learning the minimal 𝑥 latents, the learned model extracts an MDP of condensed

useful information with 𝒳 as the denoised state space, 𝑝𝜃(𝑥′ | 𝑥, 𝑎) as the transition

dynamics, 𝑝𝜃(𝑟𝑥 | 𝑥′) as the reward function. This MDP is called the Denoised MDP,

as it discards the noise distractors contained in 𝑦 and 𝑧. Additionally, we also obtain
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Algorithm 1 Denoised MDP
Input: Model 𝑝𝜃. Posterior encoder 𝑞𝜓. Policy 𝜋 : 𝒳 → Δ(𝒜).

Policy optimization algorithm Pi-Opt.
Output: Denoised MDP of 𝑥 in 𝑝𝜃. Encoder 𝑞𝜓. Policy 𝜋.
1: while training do
2: // Exploration
3: Collect trajectories with 𝜋 acting on 𝑞𝜓 encoded outputs
4: // Model learning
5: Sample a batch of (𝑠,𝑎, 𝑟) segments from reply buffer
6: Train 𝑝𝜃 and 𝑞𝜓 with Equation (5.4) on (𝑠,𝑎, 𝑟)
7: // Policy optimization
8: Sample 𝑥 ∼ 𝑞𝜓(𝑥 | 𝑠,𝑎)
9: Compute 𝑟𝑥 = E [𝑝𝜃(𝑟𝑥 | 𝑥)]

10: Train 𝜋 by running Pi-Opt on (𝑥,𝑎, 𝑟𝑥)
11: end while

𝑞𝜓(𝑥 | 𝑠,𝑎) as the encoder mapping from raw noisy observation 𝑠 to the denoised 𝑥.

A loss variant for improved stability. When using a large 𝑐 ≥ 0 (e.g. when the

environment is expected to be very noisy), Equation (5.3) contains to a term with a

large weight. Thus Equation (5.3) often requires learning rates to be tuned for different

𝑐. To avoid this, we use the following loss form that empirically has better training

stability and does not require tuning learning rates w.r.t. other hyperparameters:

min
𝜃,𝜓

ℒrecon + 𝛼 · (ℒKL-𝑥 + 𝛽ℒKL-𝑦 + 𝛽ℒKL-𝑧) , (5.4)

where 𝜃, 𝜓 in arguments are omitted, and the hyperparameters are 𝛼 > 0 and 0 < 𝛽 ≤ 1.

Here 𝛽 is bounded, where 𝛽 = 1 represents no regularization. 𝛼 is also generally small

and simply chosen according to the state-space dimensionality (see the appendix;

𝛼 ∈ {1, 2} in our experiments). This form is justified from the observation that in

practice we use isotropic Gaussians with fixed variance to parameterize the distributions

of observation 𝑝𝜃(𝑠 | . . . ) and reward 𝑝𝜃(𝑟 | . . . ), where scaling log likelihoods is

essentially changing the variance hyperparameter. Thus, Equation (5.4) is effectively

a scaled Equation (5.3) with different variance hyperparameters.
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Online algorithm with policy optimization. The model fitting objective of

Equation (5.4) can be used in various settings, e.g., offline over a collected trajectory

dataset. Without assuming existing data, we explore an online setting, where the

training process iteratively performs (1) exploration, (2) model-fitting, and (3) policy

optimization, as shown in Algorithm 1. The policy 𝜋 : 𝒳 → Δ(𝒜) soley operates on

the Denoised MDP of 𝑥, which has all information sufficient for control. For policy

optimization, the learned posterior encoder 𝑞𝜓(𝑥 | 𝑠,𝑎) is used to extract 𝑥 information

from the raw trajectory (𝑠,𝑎, 𝑟), obtaining transition sequences in 𝒳 space. Paired

with the 𝑝𝜃(𝑟𝑥 | 𝑥) rewards, we obtain (𝑥,𝑎, 𝑟𝑥) as trajectories collected from the

Denoised MDP on 𝑥. Any general-purpose MDP policy optimization algorithm may

be employed on these data, such as Stochastic Actor-Critic (SAC) (Haarnoja et al.,

2018). We can also utilize the learned differentiable Denoised MDP, e.g., optimizing

policy by backpropagating through additional roll-outs from the model, as is done in

Dreamer.

While presented in the fully observable setting, Denoised MDP readily handles

partial observability without extra changes. In the appendix, we discuss this point in

details, and provide a guideline for choosing hyperparameters 𝛼, 𝛽.

5.4 Related Work

Model-Based Learning for Control jointly learns a world model and a policy.

Such methods often enjoy good sample efficiency on RL tasks with rich observations.

Some formulations rely on strong assumptions, e.g., deterministic transition in Deep-

MDP (Gelada et al., 2019) and bilinear transition in FLAMBE (Agarwal et al., 2020).

Most general-setting methods use a reconstruction-based objective (Hafner et al.,

2019b; Kim et al., 2020; Ha and Schmidhuber, 2018; Lee et al., 2019). Among them,

Dreamer (Hafner et al., 2019a) trains world models with a variational formulation and

optimizes policies by backpropagating through latent-space rollouts. It has proven

effective across a variety of environments with image observations. However, such

reconstruction-based approaches can struggle with the presence of noise distractors.
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TIA (Fu et al., 2021) partially addresses this limitation (see Section 5.2.3) but can

not handle general distractors, unlike our method.

Representation Learning and Reinforcement Learning. Our work automates

selecting useful signals from noisy MDPs by learning denoised world models, and can

be viewed as an approach for learning general representations (Donahue et al., 2014;

Mikolov et al., 2013; He et al., 2019; Huh et al., 2016). In model-free RL, various

methods learn state embeddings that are related to value functions (Schaul et al., 2015;

Bellemare et al., 2019), transition dynamics (Mahadevan and Maggioni, 2007; Lee

et al., 2020), recent action (Pathak et al., 2017), bisimulation structure (Ferns et al.,

2004; Castro, 2020; Zhang et al., 2020a), data augmentations (Laskin et al., 2020a) etc.

While most methods adopt self-predictive auxiliary losses to learn representations (Ni

et al., 2024), our work primarily uses the factorized world model structure to extract

good abstractions. Recently, Eysenbach et al. (2021) proposes a regularizer similar to

ours but for the different purpose of robust compressed policies. The theoretical work

by Efroni et al. (2021) is closest to our setting but concerns a more restricted set of

distractors (ones both uncontrollable and reward-irrelevant). Unlike Denoised MDP,

their proposed algorithm is largely impractical and does not produce a generative

model of observations (i.e., no decoder).

System Identification. Our work is related to system identification, where an

algorithm infers from real world an abstract state among a predefined limited state

space, e.g., pose estimation (Rıza Alp Güler, 2018; Yen-Chen et al., 2021) and material

estimation (Hahn et al., 2019). Such results are useful for robotic manipulation

(Manuelli et al., 2019), image generation (Gu et al., 2019), etc. Our setting is not

limited to a predefined abstract state space, but instead focuses on automatic discovery

of such valuable states.
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Figure 5-4: Visualization of learned models for RoboDesk by using decoders to reconstruct from
encoded latents. For TIA and Denoised MDP, we visualize how they separate information as
signal versus noise. In each row, what changes over frames is the information modeled by
the corresponding latent component. E.g., in the bottom row, only the TV content, camera
pose and lighting condition change, so Denoised MDP considers these factors as noises, while
modelling the TV hue as signal. See our website for clearer video visualizations.

5.5 Experiments

In this section, we contrast our method with existing approaches on environments

with image observations and many distinct types of noise distractors. Our experiments

are designed to include a variety of noise distractors and to confirm our analysis on

various methods in Section 5.2.3.

Environments. We choose DeepMind Control (DMC) Suite (Tunyasuvunakool

et al., 2020) (Section 5.5.2) and RoboDesk (Kannan et al., 2021) (Section 5.5.1) with

image observations, where we explore adding various noise distractors. Information

types in all evaluated environments are categorized in Table D.1 of the appendix.

Tasks include control (policy optimization) and a non-control task of regressing robot
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joint position from RoboDesk image observations.

Methods. We compare not only model-based RL methods, but also model-free

algorithms and general representation learning approaches, when the task is suited:

• Model Learning: Denoised MDP (our method), Dreamer (Hafner et al., 2019a),

and TIA (Fu et al., 2021);

• Model-Free: DBC (Zhang et al., 2020a), CURL (Laskin et al., 2020a), PI-SAC

(Lee et al., 2020) (without data augmentation for a fair comparison of its core

predictive information regularization against other non-augmenting methods),

and SAC on true state-space (Haarnoja et al., 2018) (instead of using image

observations, this is roughly an “upper bound”);

• General Image Representation Learning for Non-Control Tasks: Con-

trastive learning with the Alignment+Uniformity loss (Wang and Isola, 2020) (a

form of contrastive loss theoretically and empirically comparable to the popular

InfoNCE loss (Oord et al., 2018)).

Model-learning methods can be used in combination with any policy optimization

algorithm. For a complete comparison for general control, we compare the models

trained with these two policy learning choices: (1) backpropagating via the learned

dynamics and (2) SAC on the learned latent space (which roughly recovers SLAC

(Lee et al., 2019) when used with an unfactorized model such as Dreamer).

Most compared methods do not apply data augmentations, which is known to

strongly boost performance (Yarats et al., 2021; Laskin et al., 2020b). Therefore,

for a fair comparison, we run PI-SAC without augmentation to highlight its main

contribution—representation of only predictive information.

All results are aggregated from 5 runs, showing mean and standard deviations.

The appendix contains more details, hyperparameter studies, and additional results.

Our website presents videos showing clearer video visualizations.

For Denoised MDP, we use the Figure 5-2b variant. Empirically, the Figure 5-2c

variant leads to longer training time and sometimes inferior performance (perhaps
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due to having to optimize extra components and fit a more complex model). The

appendix provides a comparison between them.

5.5.1 RoboDesk with Various Noise Distractors

We augment RoboDesk environment with many noise distractors that models realistic

noises (e.g., flickering lights and shaky camera). Most importantly, we place a large

TV in the scene, which plays natural RGB videos. A green button on the desk controls

the TV’s hue (and a light on the desk). The agent is tasked with using this button

to shift the TV to a green hue. Its reward is directly affected by how green the TV

image is. The first row of Figure 5-4 shows a trajectory with various distractors

annotated. All four types of information exist (see Table D.1), with the controllable

and reward-relevant information being the robot arm, the green button, the light on

the desk, and the TV screen green-ness.

Only Denoised MDP learns a clean denoised model. Using learned decoders,

Figure 5-4 visualizes how the models captures various information. As expected,

Dreamer model captures all information. TIA also fails to separate any noise distractors

out (the Noise row fails to capture anything), likely due to its limited ability to model

different noises. In contrast, Denoised MDP cleanly extracts all controllable and

reward-relevant information as signals—the Signal row only tracks changes in robot

arms, green button and light, and the TV screen green-ness. All other information is

modeled as noises (see the Noise row). We recommend viewing video visualizations on

our website.

Denoised models improve policy learning. Figure 5-4 also shows the total

episode return achieved by policies learned with each of the three models, where

the cleanest model from Denoised MDP achieves the best performance. Aggregating

over 5 runs, the complete comparison in Figure 5-5 shows that Denoised MDP (with

backpropagating via dynamics) generally outperforms all baselines, suggesting that

its clean models are helpful for control.
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Joint Position Regression
Final Test MSE vs. Training Set Size 

Joint Position Regression
Learning Curve for |Train Set|=104

State-Space SAC with Modified Reward

Figure 5-5: Policy optimization on RoboDesk.
We give state-space SAC a less noisy reward
so it can learn (see appendix).

Figure 5-6: Performance of finetuning various
encoders to infer joint position from RoboDesk
image observation.

Policy Learning: Backprop via Dynamics Policy Learning: SAC (Latent-Space)
DBC

PI-SAC
(No Aug.)

CURL
(Use Aug.)

State-Space SAC
(Upper Bound)

Denoised MDP TIA Dreamer Denoised MDP TIA Dreamer

Noiseless 801.4 ± 96.6 769.7 ± 97.1 848.6 ± 137.1 587.1 ± 98.7 480.2 ± 125.5 575.4 ± 146.2 297.4 ± 72.5 246.4 ± 56.6 417.3 ± 183.2 910.3 ± 28.2

Video Background 597.7 ± 117.8 407.1 ± 225.4 227.8 ± 102.7 309.8 ± 153.0 318.1 ± 123.7 188.7 ± 78.2 188.0 ± 67.4 131.7 ± 20.1 478.0 ± 113.5 910.3 ± 28.2

Video Background
+ Noisy Sensor 563.1 ± 143.0 261.2 ± 200.4 212.4 ± 89.7 288.2 ± 123.4 197.3 ± 124.2 218.2 ± 58.1 79.9 ± 36.0 152.5 ± 12.6 354.3 ± 119.9 919.8 ± 100.7

Video Background
+ Camera Jittering 254.1 ± 114.2 151.7 ± 160.5 98.6 ± 27.7 186.8 ± 47.7 126.5 ± 125.6 105.2 ± 33.8 68.0 ± 38.4 91.6 ± 7.6 390.4 ± 64.9 910.3 ± 28.2

Table 5.1: DMC policy optimization results. For each variant, we aggregate performance
across three tasks (Cheetah Run, Walker Walk, Reacher Easy) by averaging. Denoised MDP
performs well across all four variants with distinct noise types. Bold numbers show the
best model-learning result for specific policy learning choices, or the best overall result. On
Camera Jittering, Denoised MDP greatly outperforms all other methods except for CURL,
which potentially benefits from its specific data augmentation choice (random crop) on this
task, and can be seen as using extra information (i.e., knowing the noise distractor form). In
fact, Denoised MDP is the only method that consistently performs well across all tasks and
noise variants, which can be seen from the full results in the appendix.

Denoised models benefit non-control tasks. We evaluate the learned represen-

tations on a supervised non-control task—regressing the robot arm joint position from

observed images. Using various pretrained encoders, we finetune on a labeled training

set, and measure mean squared error (MSE) on a heldout test set. In addition to RL

methods, we compare encoders learned via general contrastive learning on the same

amount of data. In Figure 5-6, Denoised MDP representations lead to best converged

solutions across a wide range of training set sizes, achieve faster training, and avoid

overfitting when the training set is small. DBC, CURL and PI-SAC encoders, which

take in stacked frames, are not directly comparable and thus absent from Figure 5-6.

In the appendix, we compare them with running Denoised MDP encoder on each frame
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and concatenating the output features, where Denoised MDP handily outperforms

both DBC and CURL by a large margin.

Env. 
Rollout

TIA

Denoised
MDP

Reward

Obs.

Signal

Noise

Signal

Noise

Cheetah Run
Noiseless

Reacher Easy
Video Background

Walker Walk
Video Background

+ Noisy Sensor

Cheetah Run
Video Background
+ Camera Jittering

Figure 5-7: Visualization of the different DMC variants and factorizations learned by TIA and
Denoised MDP. E.g., bottom Noise row often shows a static agent but varying background,
indicating that only the background is modeled as noises in Denoised MDP. Visualizations
of full reconstructions are in appendix. See our website for clearer video visualizations.

5.5.2 DeepMind Control Suite (DMC)

To evaluate a diverse set of noise distractors, we consider four variants for each DMC

task (see Figure 5-7 top row):

• Noiseless: Original environment without distractors.

• Video Background: Replacing noiseless background with natural videos

(Zhang et al., 2020a) (Ctrl + Rew).

• Video Background + Sensor Noise: Imperfect sensors sensitive to intensity

of a background patch (Ctrl + Rew).

• Video Background + Camera Jittering: Shifting the observation by a

smooth random walk (Ctrl + Rew).
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Denoised MDP consistently removes noise distractors. In Figure 5-7, TIA

struggles to learn clean separations in many settings. Consistent with analysis in

Section 5.2.3, it cannot handle Sensor Noise or Camera Jittering, as the former is

reward-relevant noise that it cannot model, and the latter (although reward-irrelevant)

cannot be represented by masking. Furthermore, it fails on Reacher Easy with Video

Background, where the reward is given by the distance between the agent and a

randomly-located ball. TIA encourages its noise latent to be independent of reward,

but does not prevent it from capturing the controllable agent. These failures lead to

either TIA trying to model everything as useful signals, or a badly-fit model (e.g.,

wrong agent pose in the last column). In contrast, Denoised MDP separates out noise

in all cases, obtaining a clean and accurate MDP (its Signal rows only have the agent

moving).

Denoised models consistently improve policy learning. We evaluate the

learned policies in Table 5.1, where results are aggregated by the noise distractor

variant. Other methods, while sometimes handling certain noise types well, struggle to

deal with all four distinct variants. TIA, as expected, greatly underperforms Denoised

MDP under Noisy Sensor or Camera Jittering. CURL, whose augmentation

choice potentially helps handling Camera Jittering, underperforms in other three

variants. In contrast, Denoised MDP policies consistently perform well for all noisy

variants and also the noiseless setting, regardless of the policy optimizer.

Model-based approaches have a significant lead over the model-free ones, as seen

from the DBC results in Table 5.1 and the well-known fact that direct model-free

learning on raw image observations usually fails (Laskin et al., 2020b; Kostrikov et al.,

2020; Yarats et al., 2021). These results show that learning in a world model is useful,

and that learning in a denoised world model is even better.
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5.6 Implications

In this work we explore learning denoised and compressed world models in the presence

of environment noises.

As a step towards better understanding of such noises, we categorize of information

in the wild into four types (Section 5.2). This provides a framework to contrast

and understand various methods, highlighting where they may be successful and

where they will suffer (Section 5.2.3). Insights gained this way empirically agrees

with findings from extensive experiments (Section 5.5). It can potentially assist

better algorithm design and analysis of new MDP representation methods, as we have

done in designing Denoised MDP (Section 5.3). We believe that this categorization

will be a useful framework for investigation on learning under noises, revealing not

just the (conceptual) success scenarios, but also the failure scenarios at the same

time. Additionally, the framework can be readily extended with more sophisticated

factorizations (Section 5.2.4), which can lead to corresponding Denoised MDP variants

and/or new algorithms.

Based on the framework, our proposed Denoised MDP novelly can remove all

noise distractors that are uncontrollable or reward-irrelevant, in distinction to prior

works. Empirically, it effectively identifies and removes a diverse set of noise types,

obtaining clean denoised world models (Section 5.5). It may serve as an important step

towards efficient learning of general tasks in the noisy real world. Our experiments also

highlight benefits of cleanly denoised world models on both standard control tasks as

well as non-control tasks. The success in both cases highlights the general usefulness

of such models. Given the generality of MDPs, this opens up the possibility of casting

non-RL tasks as MDPs and automatically learn representations from denoised world

models, as an alternative to manual feature engineering.
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Part III

The Platonic Representation

Hypothesis
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Chapter 6

The Platonic Representation

Hypothesis

This section is partially based on published work:

1. The Platonic Representation Hypothesis with co-authors Minyoung Huh, Brian

Cheung, and Phillip Isola at the International Conference on Machine Learning

(ICML) 2024 (Huh et al., 2024).

We argue that representations in AI models, particularly deep networks, are

converging. First, we survey many examples of convergence in the literature: over

time and across multiple domains, the ways by which different neural networks

represent data are becoming more aligned. Next, we demonstrate convergence across

data modalities: as vision models and language models get larger, they measure

distance between datapoints in a more and more alike way. We hypothesize that this

convergence is driving toward a shared statistical model of reality, akin to Plato’s

concept of an ideal reality. We term such a representation the platonic representation

and discuss several possible selective pressures toward it. Finally, we discuss the

implications of these trends, their limitations, and counterexamples to our analysis.
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6.1 Introduction

AI systems are rapidly evolving into highly multifunctional entities. For example,

whereas in the past we had special-purpose solutions for different language processing

tasks (e.g., sentiment analysis, parsing, dialogue), modern large language models

(LLMs) are competent at all these tasks using a single set of weights (Srivastava

et al., 2022). Unified systems are also being built across data modalities: instead

of using a different architecture for processing images versus text, recent models,

such as GPT4-V (OpenAI, 2023), Gemini (Google, 2023), and LLaVA (Liu et al.,

2023), handle both modalities with a combined architecture. More and more systems

are built off of general-purpose pretrained backbones, sometimes called foundation

models (Bommasani et al., 2021), that support a large range of tasks, including

robotics (Driess et al., 2023; Brohan et al., 2023), bioinformatics (Ma et al., 2024), and

healthcare (Steinberg et al., 2021). In short, AI systems are becoming increasingly

homogeneous in both their architectures and their capabilities.

This chapter explores one aspect of this trend: representational convergence. We

argue that there is a growing similarity in how datapoints are represented in different

neural network models. This similarity spans across different model architectures,

training objectives, and even data modalities.

What has led to this convergence? Will it continue? And ultimately, where does it

end?

Our central hypothesis, stated above in Figure 6-1, is that there is indeed an

endpoint to this convergence and a principle that drives it: different models are all

trying to arrive at a representation of reality, meaning a representation of the joint

distribution over events in the world that generate the data we observe. Figure 6-1

conveys this hypothesis: there exists a real world (labeled 𝑍), which we measure

with various sensors, such as the camera shown to the left (𝑋). Other projections of

these measurements, such as the textual description shown, can be produced from

the first set of measurements or mediated by some other set of measurements, e.g.,
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The Platonic Representation Hypothesis
Neural networks, trained with different objectives on different data
and modalities, are converging to a shared statistical model of re-
ality in their representation spaces.

Figure 6-1: The Platonic Representation Hypothesis: Images (𝑋) and text (𝑌 ) are
projections of a common underlying reality (𝑍). We conjecture that representation learning
algorithms will converge on a shared representation of 𝑍, and scaling model size, as well as
data and task diversity, drives this convergence.

touch or other camera views (dotted arrow from 𝑋 to 𝑌 )1. Representation learning

algorithms find vector embeddings that statistically model the various measurements

and projections. The resulting vector embeddings are all derived from the underlying

reality in 𝑍 and thereby become aligned. As models are trained on more data and

for more tasks, they require representations that capture more and more information

about 𝑍, and hence alignment toward 𝑍 increases toward a convergent point as a

function of scale.

We call this converged hypothetical representation the “platonic representation”

in reference to Plato’s Allegory of the Cave (Plato, c. 375 BC), and his idea of an

1Touch could convey the shapes in this example but not the colors. This is an important limitation
to our hypothesis that we discuss at several points in the chapter: different sensors and views might
capture different information, which may limit their potential to converge to identical representations.
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ideal reality that underlies our sensations. The training data for our algorithms are

shadows on the cave wall, yet, we hypothesize, models are recovering ever better

representations of the actual world outside the cave. This idea is not unique to Plato;

our hypothesis is also related to the notion of “convergent realism” (Newton-Smith,

1981; Putnam, 1982; Doppelt, 2007; Hardin and Rosenberg, 1982) in the philosophy

of science (i.e., that science is converging on truth), and to many arguments that

have been put forth in the representation learning literature (e.g., Tian et al. (2020b);

Zimmermann et al. (2021); Richens and Everitt (2024); Cao and Yamins (2024)).

Also closely related to our hypothesis is the “Anna Karenina scenario” described

by Bansal et al. (2021), referring to the possibility that all well-performing neural

nets represent the world in the same way. We discuss the evidence they give for

this possibility in Section 6.22. The platonic representation hypothesis refers to the

situation where we are in an Anna Karenina scenario and the “happy representation”

that is converged upon is one that reflects a statistical model of the underlying reality.

We discuss the potential nature of this statistical model in more detail in Section 6.4.

6.2 Representations are converging

Preliminaries We restrict our attention to representations that are vector embed-

dings. We characterize such a representation by the similarity structure it induces,

referred to as its kernel. Kernels are commonly used to assess representations (Korn-

blith et al., 2019; Klabunde et al., 2023); this can be justified by the fact that they

capture the relative structures among data samples, which are also the learning signal

for many machine learning algorithms (Aronszajn, 1950; Smola and Schölkopf, 1998).

Following prior literature, we define representational alignment as a measure of the

similarity of the similarity structures induced by two representations, i.e., a similarity

metric over kernels. We give the mathematical definition of these concepts below:

• A representation is a function 𝑓 : 𝒳 → R𝑛 that assigns a feature vector to each

2Borrowed from Tolstoy (1877), similar analogies have been made in other domains, such as the
“Anna Karenina principle” popularized by Diamond (1998) to explain animal domestication.
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input in some data domain 𝒳 .

• A kernel, 𝐾 : 𝒳×𝒳 → R, characterizes how a representation measures distance/sim-

ilarity between datapoints. 𝐾(𝑥𝑖, 𝑥𝑗) = ⟨𝑓(𝑥𝑖), 𝑓(𝑥𝑗)⟩, where ⟨ · , · ⟩ denotes inner

product, 𝑥𝑖, 𝑥𝑗 ∈ 𝒳 and 𝐾 ∈ 𝒦.

• A kernel-alignment metric, 𝑚 : 𝒦×𝒦 → R, measures the similarity between two

kernels, i.e., how similar is the distance measure induced by one representation to the

distance measure induced by another. Examples include Centered Kernel Distance

(CKA) (Kornblith et al., 2019), SVCCA (Raghu et al., 2017), and nearest-neighbor

metrics (Klabunde et al., 2023).

In our experiments, we use a mutual nearest-neighbor metric that measures the

mean intersection of the 𝑘-nearest neighbor sets induced by two kernels, 𝐾1 and 𝐾2,

normalized by 𝑘. This metric is a variant of those proposed in Park et al. (2024),

Klabunde et al. (2023) and Oron et al. (2017). See Appendix E.1 for the exact

definition and Appendix E.2 for comparisons with alternative alignment metrics.

Next, we explore several ways in which representations are converging. First, we

argue that different neural networks are converging to aligned representations. Then,

we show that this continues to hold across modalities, where image embeddings in

vision models align with text embeddings in language models.

6.2.1 Different models, with different architectures and objec-

tives, can have aligned representations

One indication of representational convergence is the rising number of systems built on

top of pre-trained foundation models. These models are becoming standard backbones

across a growing spectrum of tasks. Their versatility across numerous applications

implies a level of universality in the way they represent data.

While this trend implies convergence toward a relatively small set of foundation

models, it does not imply that different foundation models will arrive at the same

representation. Yet that is what has been observed by several recent papers.

Lenc and Vedaldi (2015) conducted one such study, in which they measured
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Figure 6-2: VISION models converge as COMPETENCE increases: We measure
alignment among 78 models using mutual nearest-neighbors on Places-365 (Zhou et al.,
2017), and evaluate their performance on downstream tasks from the Visual Task Adaptation
Benchmark (VTAB; Zhai et al. (2019)). LEFT: Models that solve more VTAB tasks tend to
be more aligned with each other. Error bars show standard error. RIGHT: We use UMAP
to embed models into a 2D space, based on distance , − log(alignment). More competent
and general models (blue) have more similar representations.

representational similarity through a technique called model stitching. Given two

models, 𝑓 and 𝑔, each composed of multiple layers (𝑓 = 𝑓1 ∘ · · · ∘ 𝑓𝑛, 𝑔 = 𝑔1 ∘ · · · ∘ 𝑔𝑚),

an intermediate representation from 𝑓 is integrated into 𝑔 via a learned affine stitching

layer ℎ, resulting in a new stitched model 𝐹 = 𝑓1 ∘ · · · ∘ 𝑓𝑘 ∘ ℎ ∘ 𝑔𝑘+1 ∘ · · · ∘ 𝑔𝑚. If 𝐹

has good performance, it indicates that 𝑓 and 𝑔 have compatible representations at

layer 𝑘, up to the transform ℎ.

In their study, Lenc and Vedaldi (2015) made two notable findings: (1) A vision

model trained on ImageNet (Russakovsky et al., 2015) can be aligned with a model

trained on Places-365 (Zhou et al., 2017) while maintaining good performance; (2)

The early layers of these convolutional networks are more interchangeable than later

layers. The first finding illustrates a level of data independence where distinct image

datasets lead to similar representations. The second finding agrees with extensive

research that oriented Gabor-like filters are common in both artificial and biological

vision systems. This suggests a convergence to a similar initial layer of representation
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Figure 6-3: LANGUAGE and VISION models align: We measure alignment using
mutual nearest-neighbor on the Wikipedia caption dataset (WIT) (Srinivasan et al., 2021).
The x-axis is the language model performance measured over 4M tokens from the OpenWeb-
Text dataset (Gokaslan and Cohen, 2019) (see Appendix E.2 for plots with model names).
We measure performance using 1 − bits-per-byte, where bits-per-byte normalizes the
cross-entropy by the total bytes in the input text string. The results show a linear relationship
between language-vision alignment and language modeling score, where a general trend is
that more capable language models align better with more capable vision models. We find
that CLIP models, which are trained with explicit language supervision, exhibit a higher
level of alignment. However, this alignment decreases after being fine-tuned on ImageNet
classification (labeled CLIP (I12K ft)).

across various neural network architectures (Olshausen and Field, 1996; ?). Bansal

et al. (2021) expanded on the idea of model stitching, showing that models trained

using self-supervised objectives align closely with their supervised counterparts.

Moschella et al. (2022) further demonstrated the feasibility of “zero-shot” model

stitching without learning a stitching layer. Despite the fact that different text models

were trained on different modalities, they found that the models often embed data

in remarkably similar ways. In particular, they considered the kernel 𝐾 defined by

learned representations and showed that 𝐾 serves as a bridge between models, allowing

an encoder trained in one language, like English, to work effectively with a decoder in

another, like French.

Dravid et al. (2023) extended this idea to individual neurons, and found “Rosetta

Neurons” that are activated by the same pattern across a range of vision models. Such

neurons form a common dictionary independently discovered by all models.
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6.2.2 Alignment increases with scale and performance

Kornblith et al. (2019) and Roeder et al. (2021) observed model alignment not only

exists but also increases with model scale and dataset size. On CIFAR-10 classification,

Krizhevsky et al. (2009) found that larger models exhibit greater alignment with

each other compared to smaller ones. Theoretically, Balestriero and Baraniuk (2018)

showed that models with similar outputs (e.g., as a result of having high performance)

also have similar internal activations. With the continuing trend of models scaling up,

this suggests model alignment will increase over time – we might expect that the next

generation of bigger, better models will be even more aligned with each other.

We expand upon this observation by evaluating the transfer performance of 78 vision

models. These models were trained with varying architectures, training objectives,

and datasets (detailed in Appendix E.3.1). In Figure 6-2 (left), we bin these models

based on their average transfer performance on the VTAB dataset (Zhai et al., 2019),

and then measure the average kernel alignment of the models within each bin. The

results indicate that models with high transfer performance form a tightly clustered

set of representations, while models with weak performance have more variable

representations. We further visualize this structure with UMAP (McInnes et al., 2018)

over models representation in Figure 6-2 (right). This suggests that models that are

competent all represent data in a similar way. Echoing Bansal et al. (2021) and Tolstoy

(1877), we might say: all strong models are alike, each weak model is weak in its own

way.

The discussion so far indicates that various models are aligning toward a unified

representation. But does the convergence extend to model weights? While models

with different architectures might not have compatible weight spaces, there exists

ample evidence that models with the same architecture will often converge to the same

basin of weights (Nagarajan and Kolter, 2019; Garipov et al., 2018; Lubana et al.,

2023). This holds even for models with different initializations, up to permutations

over weight space (Ainsworth et al., 2022). Because of this, it is possible to merge

separately trained models of the same architecture, and achieve some of the capabilities
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of all models in the mixture (Stoica et al., 2023; Jordan et al., 2022; Wortsman et al.,

2022).
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Figure 6-4: Alignment predicts downstream performance: We visualize correlation
between LLM alignment score to DINOv2 (Oquab et al., 2023) and downstream task
performance on Hellaswag (common-sense) (Zellers et al., 2019) and GSM8K (math) (Cobbe
et al., 2021). LLMs are plotted with radii proportional to the size of the model, and color-
coded by their rank order in language modeling scores (1 − bits-per-byte). We observe
that models aligned more closely with vision also show better performance on downstream
language tasks. For Hellaswag, there is a linear relationship with alignment score, while
GSM8K exhibits an “emergence”-esque trend.

6.2.3 Representations are converging across modalities

Do models trained on different data modalities also converge? Several works indicate

that the answer is yes.

Merullo et al. (2022) extended model stitching to the cross-modal setting, finding

that a single linear projection is sufficient to stitch a vision model to an LLM and

achieve good performance on visual question answering and image captioning. Koh

et al. (2023) showed that linear stitching can also work in the opposite direction,

aligning text inputs to visual outputs. In fact, many recent language-vision models

stitch pre-trained language and vision models together. For example, LLaVA (Liu

et al., 2023) demonstrated state-of-the-art results by projecting visual features into a

language model with a 2-layer MLP.

Other works show further kinds of evidence of cross-modal synergy. OpenAI (2023)

found that jointly training a language model with a vision model improves performance

on language tasks, compared to training the language model on its own. Sorscher

et al. (2022) show a setting in which word embeddings of visual concept names can
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be isometrically mapped to image embeddings for those same concepts. In work

concurrent to ours, Maniparambil et al. (2024) show well-trained vision encoders on

large datasets exhibit high semantic similarity with language encoders regardless of

the training paradigm (supervised, self-supervised, or language-supervised). Sharma

et al. (2024) probed the visual knowledge of LLMs trained only on language data, by

converting images into code that an LLM can process. They found that LLMs have

rich knowledge of visual structures, to the extent that decent visual representations

can be trained on images generated solely by querying an LLM to produce code and

rendering the response. In visual generation, LLMs show abilities to augment captions

with visual structures (e.g., bounding boxes) and improve generation quality (Betker

et al., 2023; Lian et al., 2023a,b; Wu et al., 2023). Over other modalities, Ngo and

Kim (2024) showed auditory models are also roughly aligned with LLMs up to a

linear transformation, and Ng et al. (2023) demonstrated the effectiveness of using

pre-trained LLMs for facial motion prediction.

We set out to address these claims in a broader scope to determine whether models

are indeed learning an increasingly modality-agnostic representation of the world. We

sampled a variety of models trained either solely on vision or solely on language, and

compared their representations as they became larger and more competent over many

tasks.

In Figure 6-3, we assess alignment between a suite of language models and vision

models. So far we have only defined alignment for two kernels defined over the same

input space. To measure cross-modal alignment, we use paired datasets to bridge

the two modalities. For vision and text, we use the Wikipedia captions dataset

{(𝑥𝑖, 𝑦𝑖)}𝑖 (Srinivasan et al., 2021), composed of images from Wikipedia (𝑥𝑖) and their

corresponding captions (𝑦𝑖). We then measure alignment between a language model

𝑓text and a vision model 𝑓img as the alignment of the two following kernels:

𝐾img(𝑖, 𝑗) = ⟨𝑓img(𝑥𝑖), 𝑓img(𝑥𝑗)⟩ (6.1)

𝐾text(𝑖, 𝑗) = ⟨𝑓text(𝑦𝑖), 𝑓text(𝑦𝑗)⟩. (6.2)
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Using this analysis, we find that the better an LLM is at language modeling, the more

it tends to aligns with vision models, as shown in Figure 6-3. The converse effect

also holds: the better a vision models is, the more it tends to align with LLMs. See

Appendix E.3.2 for more details.

6.2.4 Models are increasingly aligning to brains

Neural networks also show substantial alignment with biological representations in the

brain (Yamins et al., 2014). This commonality may be due to similarities in the task

and data constraints both systems are confronted with. Even though the mediums

may differ – silicon transistors versus biological neurons – the fundamental problem

faced by brains and machines is the same: efficiently extracting and understanding

the underlying structure in images, text, sounds, etc. (Barlow et al., 1961; Olshausen

and Field, 1997). Sorscher et al. (2022) developed a theoretical framework for how

the efficient extraction of novel concepts occurs for both the human visual system and

deep networks. The tasks that the human visual system has been honed to perform

through evolution – like segmentation, detection, and whole-image classification – are

also the ones that we train our neural nets to perform. Yamins et al. (2014) went as

far as to title their work in the spirit that performance over such tasks implies brain

alignment. Antonello and Huth (2024) posited that it is less the particular task and

more the generality of the representations that explain their alignment with biological

representations. Further, Conwell et al. (2022) showed that training data plays a

large role in alignment. Psychophysical studies have also shown agreement between

how humans perceive visual similarity and how models do, even when the models are

trained on tasks, such as self-supervised prediction, that are seemingly unrelated to

mimicking human perception (Zhang et al., 2018).

6.2.5 Does alignment predict downstream performance?

If models are converging towards a more accurate representation of reality, we expect

that alignment should correspond to improved performance on downstream tasks.
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space 1
<latexit sha1_base64="18Zjza79/9bv33YsePIgOfZKpy8=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4Kru96LHoxWMF+wHtUrLpbBuaZJckK5SlP8KLB0W8+nu8+W9M2z1o64PA472ZycyLUsGN9f1vb2Nza3tnt7RX3j84PDqunJy2TZJphi2WiER3I2pQcIUty63AbqqRykhgJ5rczf3OE2rDE/VopymGko4Ujzmj1kkdk1KGJBhUqn7NX4Csk6AgVSjQHFS++sOEZRKVZYIa0wv81IY51ZYzgbNyPzPoRk/oCHuOKirRhPli3Rm5dMqQxIl2T1myUH935FQaM5WRq5TUjs2qNxf/83qZjW/CnKs0s6jY8qM4E8QmZH47GXKNzIqpI5Rp7nYlbEw1ZdYlVHYhBKsnr5N2vRb4teChXm3cFnGU4Bwu4AoCuIYG3EMTWsBgAs/wCm9e6r14797HsnTDK3rO4A+8zx+q2I8b</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit>

space 2
<latexit sha1_base64="X7UBoVQavr21YMAA6C/nQxPP8Nc=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBE8ld1e9Fj04rGC/YB2Kdl0tg3NZpckK5SlP8KLB0W8+nu8+W9M2z1o64PA472ZycwLUymM9bxvsrG5tb2zW9or7x8cHh1XTk7bJsk0xxZPZKK7ITMohcKWFVZiN9XI4lBiJ5zczf3OE2ojEvVopykGMRspEQnOrJM6JmUcaX1QqXo1bwG6TvyCVKFAc1D56g8TnsWoLJfMmJ7vpTbImbaCS5yV+5lBN3rCRthzVLEYTZAv1p3RS6cMaZRo95SlC/V3R85iY6Zx6CpjZsdm1ZuL/3m9zEY3QS5UmllUfPlRlElqEzq/nQ6FRm7l1BHGtXC7Uj5mmnHrEiq7EPzVk9dJu17zvZr/UK82bos4SnAOF3AFPlxDA+6hCS3gMIFneIU3kpIX8k4+lqUbpOg5gz8gnz+sXI8c</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit>

Hypothesis
<latexit sha1_base64="cMheVzeaFOxQm33/2jltUVmfiJc=">AAAB8XicbVBNS8NAEN34WetX1aOXYBE8laQXPRa99FjBfmAbymY7aZdudsPuRAih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLE8ENet63s7G5tb2zW9or7x8cHh1XTk47RqWaQZspoXQvpAYEl9BGjgJ6iQYahwK64fRu7nefQBuu5ANmCQQxHUsecUbRSo/NLFE4AcPNsFL1at4C7jrxC1IlBVrDytdgpFgag0QmqDF930swyKlGzgTMyoPUQELZlI6hb6mkMZggX1w8cy+tMnIjpW1JdBfq74mcxsZkcWg7Y4oTs+rNxf+8forRTZBzmaQIki0XRalwUbnz990R18BQZJZQprm91WUTqilDG1LZhuCvvrxOOvWa79X8+3q1cVvEUSLn5IJcEZ9ckwZpkhZpE0YkeSav5M0xzovz7nwsWzecYuaM/IHz+QPnipEM</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit>

Hypothesis
<latexit sha1_base64="cMheVzeaFOxQm33/2jltUVmfiJc=">AAAB8XicbVBNS8NAEN34WetX1aOXYBE8laQXPRa99FjBfmAbymY7aZdudsPuRAih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLE8ENet63s7G5tb2zW9or7x8cHh1XTk47RqWaQZspoXQvpAYEl9BGjgJ6iQYahwK64fRu7nefQBuu5ANmCQQxHUsecUbRSo/NLFE4AcPNsFL1at4C7jrxC1IlBVrDytdgpFgag0QmqDF930swyKlGzgTMyoPUQELZlI6hb6mkMZggX1w8cy+tMnIjpW1JdBfq74mcxsZkcWg7Y4oTs+rNxf+8forRTZBzmaQIki0XRalwUbnz990R18BQZJZQprm91WUTqilDG1LZhuCvvrxOOvWa79X8+3q1cVvEUSLn5IJcEZ9ckwZpkhZpE0YkeSav5M0xzovz7nwsWzecYuaM/IHz+QPnipEM</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit>

space 1
<latexit sha1_base64="18Zjza79/9bv33YsePIgOfZKpy8=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4Kru96LHoxWMF+wHtUrLpbBuaZJckK5SlP8KLB0W8+nu8+W9M2z1o64PA472ZycyLUsGN9f1vb2Nza3tnt7RX3j84PDqunJy2TZJphi2WiER3I2pQcIUty63AbqqRykhgJ5rczf3OE2rDE/VopymGko4Ujzmj1kkdk1KGJBhUqn7NX4Csk6AgVSjQHFS++sOEZRKVZYIa0wv81IY51ZYzgbNyPzPoRk/oCHuOKirRhPli3Rm5dMqQxIl2T1myUH935FQaM5WRq5TUjs2qNxf/83qZjW/CnKs0s6jY8qM4E8QmZH47GXKNzIqpI5Rp7nYlbEw1ZdYlVHYhBKsnr5N2vRb4teChXm3cFnGU4Bwu4AoCuIYG3EMTWsBgAs/wCm9e6r14797HsnTDK3rO4A+8zx+q2I8b</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit><latexit sha1_base64="mPJ5vUjtI9Z3NJNiQlWfck9DNEk=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGxO+7Va/mzUFWiV+QKhT433jf/ewNEpbFKA0TVOuu76UmyKkynAmcVnqZRnt/TIfYtVTSGHWQzzNNyZlVBiRKlH3SkLn6cyOnsdaTOLSTMTUjvezNxL+8bmaiyyDnMs0MSrY4FGWCmITMCiIDrpAZMbGEMsXtXwkbUUWZsTVWbHR/OegqadVrvlfz7+rVxlXRWRlO4BTOwYcLaMAN3EITGIzhEZ7h1XlyXpw3530xWnKKnWP4BefjG1iblpQ=</latexit>

space 2
<latexit sha1_base64="X7UBoVQavr21YMAA6C/nQxPP8Nc=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBE8ld1e9Fj04rGC/YB2Kdl0tg3NZpckK5SlP8KLB0W8+nu8+W9M2z1o64PA472ZycwLUymM9bxvsrG5tb2zW9or7x8cHh1XTk7bJsk0xxZPZKK7ITMohcKWFVZiN9XI4lBiJ5zczf3OE2ojEvVopykGMRspEQnOrJM6JmUcaX1QqXo1bwG6TvyCVKFAc1D56g8TnsWoLJfMmJ7vpTbImbaCS5yV+5lBN3rCRthzVLEYTZAv1p3RS6cMaZRo95SlC/V3R85iY6Zx6CpjZsdm1ZuL/3m9zEY3QS5UmllUfPlRlElqEzq/nQ6FRm7l1BHGtXC7Uj5mmnHrEiq7EPzVk9dJu17zvZr/UK82bos4SnAOF3AFPlxDA+6hCS3gMIFneIU3kpIX8k4+lqUbpOg5gz8gnz+sXI8c</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit><latexit sha1_base64="C++06etgmcd/smPxZYwdqkM+dyM=">AAACE3icjVC7SgNBFL0bXzG+Vi1tBoNgFXbTaBm0sVQwD0iWMDu5mwyZnV1mZoWw5CMsbPwVGxFbGzv/xkmyhSYWHhg4nHMvd84JU8G18bwvp7S2vrG5Vd6u7Ozu7R+4h0ctnWSKYZMlIlGdkGoUXGLTcCOwkyqkcSiwHY6vZ377AZXmibw3kxSDmA4ljzijxkptnVKGpN53q17Nm4OsEr8gVSjwv/G++9kbJCyLURomqNZd30tNkFNlOBM4rfQyjfb+mA6xa6mkMeogn2eakjOrDEiUKPukIXP150ZOY60ncWgnY2pGetmbiX953cxEl0HOZZoZlGxxKMoEMQmZFUQGXCEzYmIJZYrbvxI2oooyY2us2Oj+ctBV0qrXfK/m39WrjauiszKcwCmcgw8X0IAbuIUmMBjDIzzDq/PkvDhvzvtitOQUO8fwC87HN1pElpU=</latexit>

Hypothesis
<latexit sha1_base64="cMheVzeaFOxQm33/2jltUVmfiJc=">AAAB8XicbVBNS8NAEN34WetX1aOXYBE8laQXPRa99FjBfmAbymY7aZdudsPuRAih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLE8ENet63s7G5tb2zW9or7x8cHh1XTk47RqWaQZspoXQvpAYEl9BGjgJ6iQYahwK64fRu7nefQBuu5ANmCQQxHUsecUbRSo/NLFE4AcPNsFL1at4C7jrxC1IlBVrDytdgpFgag0QmqDF930swyKlGzgTMyoPUQELZlI6hb6mkMZggX1w8cy+tMnIjpW1JdBfq74mcxsZkcWg7Y4oTs+rNxf+8forRTZBzmaQIki0XRalwUbnz990R18BQZJZQprm91WUTqilDG1LZhuCvvrxOOvWa79X8+3q1cVvEUSLn5IJcEZ9ckwZpkhZpE0YkeSav5M0xzovz7nwsWzecYuaM/IHz+QPnipEM</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit><latexit sha1_base64="B+b/jF1gJbxAde33GnB653x9wZc=">AAACFnicjVC7SgNBFL0bXzG+opY2i0GwCrtptAzapFQwD0yWMDu5mwyZnVlmZoUl5C8sbPwVGxFbsfNvnCRbaGLhgYHDOedy554w4Uwbz/tyCmvrG5tbxe3Szu7e/kH58KilZaooNqnkUnVCopEzgU3DDMdOopDEIcd2OL6e+e0HVJpJcWeyBIOYDAWLGCXGSveNLJFmhJrpfrniVb053FXi56QCOf4X75c/ewNJ0xiFoZxo3fW9xAQTogyjHKelXqoxIXRMhti1VJAYdTCZnzV1z6wycCOp7BPGnas/JyYk1jqLQ5uMiRnpZW8m/uV1UxNdBhMmktSgoItFUcpdI91ZR+6AKaSGZ5YQqpj9q0tHRBFqbJMle7q/fOgqadWqvlf1b2uV+lXeWRFO4BTOwYcLqEMDbqAJFAQ8wjO8Ok/Oi/PmvC+iBSefOYZfcD6+Adk7mIU=</latexit>

Scale up
<latexit sha1_base64="ctwBWq2U9QXa7DTNTrIa0ueuveo=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxInc0WhJtLDHKRwIXsrfMwYa9vWN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSboR3QoecgZNVbqPDAqkKRJv1xxq+4CZJ14OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4K/VSjQllYzrErqWSRqj9bHHvjFxYZUDCWNmShizU3xMZjbSeRoHtjKgZ6VVvLv7ndVMTXvsZl0lqULLlojAVxMRk/jwZcIXMiKkllClubyVsRBVlxkZUsiF4qy+vk1at6rlV775Wqd/kcRThDM7hEjy4gjrcQQOawEDAM7zCmzNxXpx352PZWnDymVP4A+fzB6uuj7U=</latexit><latexit sha1_base64="hOETAKy0LkJCk7ZKzpax/aB3fFU=">AAACFHicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVQ0D0iWMDu5mwyZnV1mZoWw5CcsbPwVGxFbCzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxhfzfz2AyrNY3lvJgn6ER1KHnJGjZU6d4wKJGnSL1fcqjsHWSVeTiqQ43/xfvmzN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n8qCk5s8qAhLGyTxoyV39OZDTSehIFNhlRM9LL3kz8y+umJqz7GZdJalCyxaIwFcTEZNYQGXCFzIiJJZQpbv9K2IgqyoztsWRP95YPXSWtWtVzq95trdK4zDsrwgmcwjl4cAENuIYbaAIDAY/wDK/Ok/PivDnvi2jByWeO4Recj29uZpcu</latexit><latexit sha1_base64="hOETAKy0LkJCk7ZKzpax/aB3fFU=">AAACFHicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVQ0D0iWMDu5mwyZnV1mZoWw5CcsbPwVGxFbCzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxhfzfz2AyrNY3lvJgn6ER1KHnJGjZU6d4wKJGnSL1fcqjsHWSVeTiqQ43/xfvmzN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n8qCk5s8qAhLGyTxoyV39OZDTSehIFNhlRM9LL3kz8y+umJqz7GZdJalCyxaIwFcTEZNYQGXCFzIiJJZQpbv9K2IgqyoztsWRP95YPXSWtWtVzq95trdK4zDsrwgmcwjl4cAENuIYbaAIDAY/wDK/Ok/PivDnvi2jByWeO4Recj29uZpcu</latexit><latexit sha1_base64="hOETAKy0LkJCk7ZKzpax/aB3fFU=">AAACFHicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVQ0D0iWMDu5mwyZnV1mZoWw5CcsbPwVGxFbCzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxhfzfz2AyrNY3lvJgn6ER1KHnJGjZU6d4wKJGnSL1fcqjsHWSVeTiqQ43/xfvmzN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n8qCk5s8qAhLGyTxoyV39OZDTSehIFNhlRM9LL3kz8y+umJqz7GZdJalCyxaIwFcTEZNYQGXCFzIiJJZQpbv9K2IgqyoztsWRP95YPXSWtWtVzq95trdK4zDsrwgmcwjl4cAENuIYbaAIDAY/wDK/Ok/PivDnvi2jByWeO4Recj29uZpcu</latexit>

architectures
<latexit sha1_base64="HxVNIkMHx1zZk5+9XhEjo2dCrT0=">AAAB9XicbVDLTgJBEOz1ifhCPXqZSEw8kV0ueiR68YiJPBJYyezQwITZR2Z6NWTDf3jxoDFe/Rdv/o0D7EHBSjqpVHWnuytIlDTkut/O2vrG5tZ2Yae4u7d/cFg6Om6aONUCGyJWsW4H3KCSETZIksJ2opGHgcJWML6Z+a1H1EbG0T1NEvRDPozkQApOVnpgXIuRJBSUajS9UtmtuHOwVeLlpAw56r3SV7cfizTEiITixnQ8NyE/45qkUDgtdlODCRdjPsSOpREP0fjZ/OopO7dKnw1ibSsiNld/T2Q8NGYSBrYz5DQyy95M/M/rpDS48jMZJSlhJBaLBqliFLNZBKwvtX1YTSzhQkt7KxMjrrkgG1TRhuAtv7xKmtWK51a8u2q5dp3HUYBTOIML8OASanALdWiAAA3P8ApvzpPz4rw7H4vWNSefOYE/cD5/AKmokpo=</latexit><latexit sha1_base64="1Bw8ZUC5PEBHtAaJdkh29WJ9Gbc=">AAACGnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzgCSG2cndZMjsg5m7QljyHxY2/oqNiJ3Y+DdOki00sfDAwOGcc7lzj58oach1v5yV1bX1jc3CVnF7Z3dvv3Rw2DBxqgXWRaxi3fK5QSUjrJMkha1EIw99hU1/dDX1mw+ojYyjOxon2A35IJKBFJysdM+4FkNJKCjVaHqlsltxZ2DLxMtJGXL8L94rfXT6sUhDjEgobkzbcxPqZlyTFAonxU5qMOFixAfYtjTiIZpuNjttwk6t0mdBrO2LiM3UnxMZD40Zh75NhpyGZtGbin957ZSCi24moyQljMR8UZAqRjGb9sT6UttW1NgSLrS0f2ViyDUXZNss2tO9xUOXSaNa8dyKd1st1y7zzgpwDCdwBh6cQw2u4QbqIEDDIzzDq/PkvDhvzvs8uuLkM0fwC87nN8+rmhM=</latexit><latexit sha1_base64="1Bw8ZUC5PEBHtAaJdkh29WJ9Gbc=">AAACGnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzgCSG2cndZMjsg5m7QljyHxY2/oqNiJ3Y+DdOki00sfDAwOGcc7lzj58oach1v5yV1bX1jc3CVnF7Z3dvv3Rw2DBxqgXWRaxi3fK5QSUjrJMkha1EIw99hU1/dDX1mw+ojYyjOxon2A35IJKBFJysdM+4FkNJKCjVaHqlsltxZ2DLxMtJGXL8L94rfXT6sUhDjEgobkzbcxPqZlyTFAonxU5qMOFixAfYtjTiIZpuNjttwk6t0mdBrO2LiM3UnxMZD40Zh75NhpyGZtGbin957ZSCi24moyQljMR8UZAqRjGb9sT6UttW1NgSLrS0f2ViyDUXZNss2tO9xUOXSaNa8dyKd1st1y7zzgpwDCdwBh6cQw2u4QbqIEDDIzzDq/PkvDhvzvs8uuLkM0fwC87nN8+rmhM=</latexit><latexit sha1_base64="1Bw8ZUC5PEBHtAaJdkh29WJ9Gbc=">AAACGnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzgCSG2cndZMjsg5m7QljyHxY2/oqNiJ3Y+DdOki00sfDAwOGcc7lzj58oach1v5yV1bX1jc3CVnF7Z3dvv3Rw2DBxqgXWRaxi3fK5QSUjrJMkha1EIw99hU1/dDX1mw+ojYyjOxon2A35IJKBFJysdM+4FkNJKCjVaHqlsltxZ2DLxMtJGXL8L94rfXT6sUhDjEgobkzbcxPqZlyTFAonxU5qMOFixAfYtjTiIZpuNjttwk6t0mdBrO2LiM3UnxMZD40Zh75NhpyGZtGbin957ZSCi24moyQljMR8UZAqRjGb9sT6UttW1NgSLrS0f2ViyDUXZNss2tO9xUOXSaNa8dyKd1st1y7zzgpwDCdwBh6cQw2u4QbqIEDDIzzDq/PkvDhvzvs8uuLkM0fwC87nN8+rmhM=</latexit>

Loss
<latexit sha1_base64="Qv+C7rKsOIBGxHPCTreDEtY3tEw=">AAAB63icbVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWFhEMA9IljA7mU2GzGOZmRXCkl+wsVDE1h+y82+cTbbQxAMXDufcy733RAlnxvr+t1fa2Nza3invVvb2Dw6PqscnHaNSTWibKK50L8KGciZp2zLLaS/RFIuI0240vc397hPVhin5aGcJDQUeSxYzgm0u3StjhtWaX/cXQOskKEgNCrSG1a/BSJFUUGkJx8b0Az+xYYa1ZYTTeWWQGppgMsVj2ndUYkFNmC1unaMLp4xQrLQradFC/T2RYWHMTESuU2A7MateLv7n9VMbX4cZk0lqqSTLRXHKkVUofxyNmKbE8pkjmGjmbkVkgjUm1sVTcSEEqy+vk06jHvj14KFRa94UcZThDM7hEgK4gibcQQvaQGACz/AKb57wXrx372PZWvKKmVP4A+/zBxjRjkE=</latexit><latexit sha1_base64="4YxSAN2nlAicW/wTm7Ptf3oazXc=">AAACEHicjVC7TsMwFL3mWcqrwMhiUSExVUkXGCtYGBhAog+pjSrHdVqrjh3ZDlIV9RcYWPgVFoRYGdn4G5w2A7QMHMnS0Tnn6vqeMBHcWM/7Qiura+sbm6Wt8vbO7t5+5eCwZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Or3K//cC04Ure20nCgpgMJY84JTaXbpQx/UrVq3kz4GXiF6QKBf4X71c+ewNF05hJSwUxput7iQ0yoi2ngk3LvdSwhNAxGbKuo5LEzATZ7KApPnXKAEdKuyctnqk/JzISGzOJQ5eMiR2ZRS8X//K6qY0ugozLJLVM0vmiKBXYKpy3gwdcM2rFxBFCNXd/xXRENKHWdVh2p/uLhy6TVr3mezX/rl5tXBadleAYTuAMfDiHBlzDLTSBwgge4Rle0RN6QW/ofR5dQcXMEfwC+vgGquqVug==</latexit><latexit sha1_base64="4YxSAN2nlAicW/wTm7Ptf3oazXc=">AAACEHicjVC7TsMwFL3mWcqrwMhiUSExVUkXGCtYGBhAog+pjSrHdVqrjh3ZDlIV9RcYWPgVFoRYGdn4G5w2A7QMHMnS0Tnn6vqeMBHcWM/7Qiura+sbm6Wt8vbO7t5+5eCwZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Or3K//cC04Ure20nCgpgMJY84JTaXbpQx/UrVq3kz4GXiF6QKBf4X71c+ewNF05hJSwUxput7iQ0yoi2ngk3LvdSwhNAxGbKuo5LEzATZ7KApPnXKAEdKuyctnqk/JzISGzOJQ5eMiR2ZRS8X//K6qY0ugozLJLVM0vmiKBXYKpy3gwdcM2rFxBFCNXd/xXRENKHWdVh2p/uLhy6TVr3mezX/rl5tXBadleAYTuAMfDiHBlzDLTSBwgge4Rle0RN6QW/ofR5dQcXMEfwC+vgGquqVug==</latexit><latexit sha1_base64="4YxSAN2nlAicW/wTm7Ptf3oazXc=">AAACEHicjVC7TsMwFL3mWcqrwMhiUSExVUkXGCtYGBhAog+pjSrHdVqrjh3ZDlIV9RcYWPgVFoRYGdn4G5w2A7QMHMnS0Tnn6vqeMBHcWM/7Qiura+sbm6Wt8vbO7t5+5eCwZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Or3K//cC04Ure20nCgpgMJY84JTaXbpQx/UrVq3kz4GXiF6QKBf4X71c+ewNF05hJSwUxput7iQ0yoi2ngk3LvdSwhNAxGbKuo5LEzATZ7KApPnXKAEdKuyctnqk/JzISGzOJQ5eMiR2ZRS8X//K6qY0ugozLJLVM0vmiKBXYKpy3gwdcM2rFxBFCNXd/xXRENKHWdVh2p/uLhy6TVr3mezX/rl5tXBadleAYTuAMfDiHBlzDLTSBwgge4Rle0RN6QW/ofR5dQcXMEfwC+vgGquqVug==</latexit>

Figure 6-5: The Capacity Hypothesis: If an optimal representation exists in function
space, larger hypothesis spaces are more likely to cover it. LEFT: Two small models might
not cover the optimum and thus find different solutions (marked by outlined ☆). RIGHT:
As the models become larger, they cover the optimum and converge to the same solution
(marked by filled F).

Figure 6-4 supports this hypothesis by demonstrating improved performance on

commonsense reasoning (Hellaswag; Zellers et al. (2019)) and mathematical problem

solving (GSM8K; Cobbe et al. (2021)) as alignment improves.

6.3 Why are representations converging?

Modern machine learning models are generally trained to minimize the empirical risk

with possible implicit and/or explicit regularization:

trained model

𝑓 * = argmin
𝑓∈ ℱ

function class

E𝑥∼ dataset [

training objective

ℒ (𝑓, 𝑥)] + ℛ
regularization

(𝑓)

In the following sections, we lay out how each colored component in this optimization

process potentially plays a role in facilitating representational convergence.

6.3.1 Convergence via Task Generality

Each training datapoint and objective (task) places an additional constraint on the

model. As data and tasks scale, the volume of representations that satisfy these

constraints must proportionately grow smaller, as visualized in Figure 6-6 and stated

below:
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Solves task 1
<latexit sha1_base64="51NXQkDypcG/A+WtwXqm2WeyfWo=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc0WhJtLDHKRwIXsrfswYa923N3joRc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0jEo1402mpNKdgBouRcybKFDyTqI5jQLJ28H4du63J1wboeJHnCbcj+gwFqFgFK3kPyg54YYgNWPi9csVt+ouQNaJl5MK5Gj0y1+9gWJpxGNkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rU0phE3frY4ekYurDIgodK2YiQL9fdERiNjplFgOyOKI7PqzcX/vG6K4bWfiThJkcdsuShMJUFF5gmQgdCcoZxaQpkW9lbCRlRThjankg3BW315nbRqVc+teve1Sv0mj6MIZ3AOl+DBFdThDhrQBAZP8Ayv8OZMnBfn3flYthacfOYU/sD5/AEMH5Ga</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit>

Solves task
<latexit sha1_base64="vHe9mN3flA+xmkcJNFXcKeX8kHA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkveix68VjRfkAayma7aZdusmF3UiihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLUykMuu63s7G5tb2zW9or7x8cHh1XTk7bRmWa8RZTUuluSA2XIuEtFCh5N9WcxqHknXB8N/c7E66NUMkTTlMexHSYiEgwilbyH5WccEOQmnG/UnVr7gJknXgFqUKBZr/y1RsolsU8QSapMb7nphjkVKNgks/KvczwlLIxHXLf0oTG3AT54uQZubTKgERK20qQLNTfEzmNjZnGoe2MKY7MqjcX//P8DKObIBdJmiFP2HJRlEmCisz/JwOhOUM5tYQyLeythI2opgxtSmUbgrf68jpp12ueW/Me6tXGbRFHCc7hAq7Ag2towD00oQUMFDzDK7w56Lw4787HsnXDKWbO4A+czx8+nJE1</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit>

2<latexit sha1_base64="yq8/5g8NcY6cy0ADZKiGUGrj1YY=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc0UhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUqg3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0alXPrXqtWqVxm8dRhAu4hGvw4AYacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx97gYy0</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit>

Hypothesis space
<latexit sha1_base64="tLmIljFWhXs/Bu7+r0Wbg/j8TVU="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit>

Simple
<latexit sha1_base64="zFVvUIF9Z2hD+LDeFqir1+TO8Qw=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvMJWt2947dPSGE/AcbC0Vs/T92/hs3yRWa+GDg8d4MM/OiVHBjff/bW1vf2NzaLuwUd/f2Dw5LR8dNk2SaYYMlItHtiBoUXGHDciuwnWqkMhLYikY3M7/1hNrwRD3YcYqhpAPFY86odVLznstUYK9U9iv+HGSVBDkpQ456r/TV7Scsk6gsE9SYTuCnNpxQbTkTOC12M4MpZSM6wI6jiko04WR+7ZScO6VP4kS7UpbM1d8TEyqNGcvIdUpqh2bZm4n/eZ3MxlfhhKs0s6jYYlGcCWITMnud9LlGZsXYEco0d7cSNqSaMusCKroQguWXV0mzWgn8SnBXLdeu8zgKcApncAEBXEINbqEODWDwCM/wCm9e4r14797HonXNy2dO4A+8zx+W+48e</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit>

functions
<latexit sha1_base64="ha6+cYdMcIxvOCs6820nv4vYs8Q=">AAAB8HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZbnRZdOOygr1IO5RMmmlDk8yQZIQy9CncuFDErY/jzrcx085CW38IfPznHHLOHyaCG+t536i0sbm1vVPereztHxweVY9POiZONWVtGotY90JimOCKtS23gvUSzYgMBeuG09u83n1i2vBYPdhZwgJJxopHnBLrrMcoVTQHM6zWvLq3EF4Hv4AaFGoNq1+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd+hIpKZIFssPMcXzhnhKNbuKYsX7u+JjEhjZjJ0nZLYiVmt5eZ/tX5qo+sg4ypJLVN0+VGUCmxjnF+PR1wzasXMAaGau10xnRBNqHUZVVwI/urJ69Bp1H2v7t83as2bIo4ynME5XIIPV9CEO2hBGyhIeIZXeEMavaB39LFsLaFi5hT+CH3+ADubkKs=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit>

Functions that solve
<latexit sha1_base64="qY5BReh17p74a3n3nJbos5lx5Kk=">AAAB/XicbZDLSgMxFIYz9VbrrV52boJFcFVmutFlURCXFewF2qFk0kwbmkmG5EyhDsVXceNCEbe+hzvfxkw7C239IfDxn3M4J38QC27Adb+dwtr6xuZWcbu0s7u3f1A+PGoZlWjKmlQJpTsBMUxwyZrAQbBOrBmJAsHawfgmq7cnTBuu5ANMY+ZHZCh5yCkBa/XLJ7eJpBkaDCMC2CgxYf1yxa26c+FV8HKooFyNfvmrN1A0iZgEKogxXc+NwU+JBk4Fm5V6iWExoWMyZF2LkkTM+On8+hk+t84Ah0rbJwHP3d8TKYmMmUaB7YwIjMxyLTP/q3UTCK/8lMs4ASbpYlGYCAwKZ1HgAdeMgphaIFRzeyumI6IJBRtYyYbgLX95FVq1qudWvftapX6dx1FEp+gMXSAPXaI6ukMN1EQUPaJn9IrenCfnxXl3PhatBSefOUZ/5Hz+AI0ilUQ=</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit>

the tasks
<latexit sha1_base64="kHNBGIL9Xh/D+2bTV1fyNlwdkTY=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe7SaBm0sYxgPiQ5wt5mkyzZ3Tt254Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJVJY9P1vr7CxubW9U9wt7e0fHB6Vj09aNk4N400Wy9h0Imq5FJo3UaDkncRwqiLJ29Hkdu63n7ixItYPOE14qOhIi6FgFJ30iGNOkNqJ7ZcrftVfgKyTICcVyNHol796g5ilimtkklrbDfwEw4waFEzyWamXWp5QNqEj3nVUU8VtmC0OnpELpwzIMDauNJKF+nsio8raqYpcp6I4tqveXPzP66Y4vA4zoZMUuWbLRcNUEozJ/HsyEIYzlFNHKDPC3UrYmBrK0GVUciEEqy+vk1atGvjV4L5Wqd/kcRThDM7hEgK4gjrcQQOawEDBM7zCm2e8F+/d+1i2Frx85hT+wPv8Ab3BkFk=</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit>

Hypothesis space
<latexit sha1_base64="tLmIljFWhXs/Bu7+r0Wbg/j8TVU="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc=">AAACxnicjVHbattAEF2rt8S9Oe1jX0RNoZRipLy0j6Htg19KW4idgFeY0XokL9mL2B0lFULQD+lrviZf0L/pynGgSUrpwMLZM2eYOTN5paSnJPk1iO7cvXf/wc7u8OGjx0+ejvaezb2tncCZsMq64xw8KmlwRpIUHlcOQecKj/KTj33+6BSdl9YcUlNhpqE0spACKFDL0WjaVJbW6KWPfQUCl6NxMkk2Ed8G6RaM2Tb+T77cGzR8ZUWt0ZBQ4P0iTSrKWnAkhcJuyGuPof0JlLgI0IBGn7Ubf138KjCruLAuPEPxhv2zogXtfaPzoNRAa38z15N/yy1qKt5nrTRVTWjEZaOiVjHZuF9WvJIOBakmABBOhlljsQYHgsJKh0Nu8ExYrcGsWm6s090izVqusCCu5uhonHInyzVx1/+Cy08Y3Dv8HCb5UqEDsu5Ny8GVWpoubKPkb3v0LyF8vxIGdH0EcmB8ZT12Ld+YLdrDrgsnSm8e5DaY70/SZJJ+2x8ffNjedoe9YC/Za5ayd+yATdlXNmOCnbKf7JxdRNPIRHV0dimNBtua5+xaRD9+Ay8H2vY=</latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc=">AAACxnicjVHbattAEF2rt8S9Oe1jX0RNoZRipLy0j6Htg19KW4idgFeY0XokL9mL2B0lFULQD+lrviZf0L/pynGgSUrpwMLZM2eYOTN5paSnJPk1iO7cvXf/wc7u8OGjx0+ejvaezb2tncCZsMq64xw8KmlwRpIUHlcOQecKj/KTj33+6BSdl9YcUlNhpqE0spACKFDL0WjaVJbW6KWPfQUCl6NxMkk2Ed8G6RaM2Tb+T77cGzR8ZUWt0ZBQ4P0iTSrKWnAkhcJuyGuPof0JlLgI0IBGn7Ubf138KjCruLAuPEPxhv2zogXtfaPzoNRAa38z15N/yy1qKt5nrTRVTWjEZaOiVjHZuF9WvJIOBakmABBOhlljsQYHgsJKh0Nu8ExYrcGsWm6s090izVqusCCu5uhonHInyzVx1/+Cy08Y3Dv8HCb5UqEDsu5Ny8GVWpoubKPkb3v0LyF8vxIGdH0EcmB8ZT12Ld+YLdrDrgsnSm8e5DaY70/SZJJ+2x8ffNjedoe9YC/Za5ayd+yATdlXNmOCnbKf7JxdRNPIRHV0dimNBtua5+xaRD9+Ay8H2vY=</latexit>

simplicity bias
<latexit sha1_base64="9hYX6Wjy0VHKyxplovop/5+4+qY=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0l60WPRi8cK9gPaUDbbTbt0Nwm7EyGW/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvTKUw6Hnfzsbm1vbObmmvvH9weFRxj0/aJsk04y2WyER3Q2q4FDFvoUDJu6nmVIWSd8LJ7dzvPHJtRBI/YJ7yQNFRLCLBKFpp4FaMUHYPE5iTUFAzcKtezVuArBO/IFUo0By4X/1hwjLFY2SSGtPzvRSDKdUomOSzcj8zPKVsQke8Z2lMFTfBdHH4jFxYZUiiRNuKkSzU3xNTqozJVWg7FcWxWfXm4n9eL8PoOpiKOM2Qx2y5KMokwYTMUyBDoTlDmVtCmRb2VsLGVFOGNquyDcFffXmdtOs136v59/Vq46aIowRncA6X4MMVNOAOmtACBhk8wyu8OU/Oi/PufCxbN5xi5hT+wPn8Afmyk0U=</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit>

simplicity bias
<latexit sha1_base64="9hYX6Wjy0VHKyxplovop/5+4+qY=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0l60WPRi8cK9gPaUDbbTbt0Nwm7EyGW/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvTKUw6Hnfzsbm1vbObmmvvH9weFRxj0/aJsk04y2WyER3Q2q4FDFvoUDJu6nmVIWSd8LJ7dzvPHJtRBI/YJ7yQNFRLCLBKFpp4FaMUHYPE5iTUFAzcKtezVuArBO/IFUo0By4X/1hwjLFY2SSGtPzvRSDKdUomOSzcj8zPKVsQke8Z2lMFTfBdHH4jFxYZUiiRNuKkSzU3xNTqozJVWg7FcWxWfXm4n9eL8PoOpiKOM2Qx2y5KMokwYTMUyBDoTlDmVtCmRb2VsLGVFOGNquyDcFffXmdtOs136v59/Vq46aIowRncA6X4MMVNOAOmtACBhk8wyu8OU/Oi/PufCxbN5xi5hT+wPn8Afmyk0U=</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit>

task gradient
<latexit sha1_base64="5gXgYddUQbJOgb2Vbxiy2PQ+7dI=">AAAB9XicbVC7SgNBFL3jM8ZX1NJmMAhWYTeNlkEbywjmAcka7s7OJkNmH8zMKmHJf9hYKGLrv9j5N06SLTTxwMDhnHu4d46fSqGN43yTtfWNza3t0k55d2//4LBydNzWSaYYb7FEJqrro+ZSxLxlhJG8myqOkS95xx/fzPzOI1daJPG9maTci3AYi1AwNFZ6MKjHdKgwEDw2dFCpOjVnDrpK3IJUoUBzUPnqBwnLIhtmErXuuU5qvByVEUzyabmfaZ4iG+OQ9yyNMeLay+dXT+m5VQIaJso+u3yu/k7kGGk9iXw7GaEZ6WVvJv7n9TITXnm5iNPM8JgtFoWZpCahswpoIBRnRk4sQaaEvZWyESpkxhZVtiW4y19eJe16zXVq7l292rgu6ijBKZzBBbhwCQ24hSa0gIGCZ3iFN/JEXsg7+ViMrpEicwJ/QD5/ACplkkU=</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit>

task gradient
<latexit sha1_base64="5gXgYddUQbJOgb2Vbxiy2PQ+7dI=">AAAB9XicbVC7SgNBFL3jM8ZX1NJmMAhWYTeNlkEbywjmAcka7s7OJkNmH8zMKmHJf9hYKGLrv9j5N06SLTTxwMDhnHu4d46fSqGN43yTtfWNza3t0k55d2//4LBydNzWSaYYb7FEJqrro+ZSxLxlhJG8myqOkS95xx/fzPzOI1daJPG9maTci3AYi1AwNFZ6MKjHdKgwEDw2dFCpOjVnDrpK3IJUoUBzUPnqBwnLIhtmErXuuU5qvByVEUzyabmfaZ4iG+OQ9yyNMeLay+dXT+m5VQIaJso+u3yu/k7kGGk9iXw7GaEZ6WVvJv7n9TITXnm5iNPM8JgtFoWZpCahswpoIBRnRk4sQaaEvZWyESpkxhZVtiW4y19eJe16zXVq7l292rgu6ijBKZzBBbhwCQ24hSa0gIGCZ3iFN/JEXsg7+ViMrpEicwJ/QD5/ACplkkU=</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit><latexit sha1_base64="1lG3sUBkK4ERYdL3hQH7d+rY7jA=">AAACGnicjVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lgrmA5IzzO3tJUt2747dPSEc+R8WNv4VGxE7sfHfuEmu0MTCBwOP92aYeROkgmvjul/Oyura+sZmaau8vbO7t185OGzpJFOUNWkiEtUJUDPBY9Y03AjWSRVDGQjWDkZXU7/9wJTmSXxnxinzJQ5iHnGKxkr3BvWIDBSGnMWG9CtVt+bOQJaJV5AqFPhfe7/y0QsTmkm7gQrUuuu5qfFzVIZTwSblXqZZinSEA9a1NEbJtJ/Pok3IqVVCEiXKlr1wpv6cyFFqPZaB7ZRohnrRm4p/ed3MRBd+zuM0Myym80VRJohJyPRPJOSKUSPGliBV3N5K6BAVUmO/WbbRvcWgy6RVr3luzbutVxuXxc9KcAwncAYenEMDruEGmkBBwSM8w6vz5Lw4b877vHXFKWaO4Becz29EH5m+</latexit>

Figure 6-6: The Multitask Scaling Hypothesis: Models trained with an increasing
number of tasks are subjected to pressure to learn a representation that can solve all the
tasks.

The Multitask Scaling Hypothesis

There are fewer representations that are competent for 𝑁 tasks than there are

for 𝑀 < 𝑁 tasks. As we train more general models that solve more tasks at

once, we should expect fewer possible solutions.

This has been previously termed as the Contravariance principle by Cao and

Yamins (2024), which states that the set of solutions to an easy goal is large, while

the set of solutions to a challenging goal is comparatively smaller. Moreover, we argue

that this narrower solution set also generalizes better. As data scales, models that

optimize the empirical risk E𝑥∼ dataset [ℒ(𝑓, 𝑥)] also improve on the population risk

E𝑥∼ reality [ℒ(𝑓, 𝑥)], and become better at capturing statistical structures of the true

data generating process (reality).

Recent work has demonstrated a power law relationship between data scale and

model performance (Hestness et al., 2017). This implies that with enough data (e.g.,

consisting of the entire internet and all offline scientific measurements) one ought to

converge to a very small solution set with irreducible error – the inherent epistemic

143



uncertainty of the world. As more models are trained on internet-scale data, the set

of solutions that satisfies all data constraints must become relatively small.

In addition to data-scaling, many modern representation learning objectives

ℒ (𝑓, 𝑥) directly optimize for multi-task solving. Contrastive learning finds a dis-

tance structure over data samples that optimizes many classification tasks (Chapter 2;

Arora et al. (2019c); Tian et al. (2020c)). Masked Autoencoders (He et al., 2021)

optimize randomly sampled reconstruction tasks. In fact, autoregressive language

modeling can also be seen as optimizing a diverse set of tasks (Radford et al., 2019).

Such multi-task objectives may be more effective than single-task ones (e.g., ImageNet

classification) due to the fact that they impose more task constraints on the represen-

tation, leading to a smaller and higher-quality solution space (Chen et al., 2020a; He

et al., 2020; Radford et al., 2017, 2019).

6.3.2 Convergence via Model Capacity

Suppose there is a globally optimal representation for standard learning objectives.

Then, under sufficient data, scaling a model (i.e., using larger function classes ℱ

), as well as improved optimization , should be more effective at finding better

approximations to this optimum, as illustrated in Figure 6-5. With the same training

objective, larger models, even of different architectures, will thus tend to converge

toward this optimum. When different training objectives share similar minimizers,

larger models are better at finding these minimizers, and will train to similar solutions

over the training tasks. We summarize this hypothesis as follows:

The Capacity Hypothesis

Bigger models are more likely to converge to a shared representation than smaller

models.
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6.3.3 Convergence via Simplicity Bias

Arriving at the same mapping on the training data does not prohibit the models from

developing distinct internal representations. It is not unreasonable to posit that the

representations used to detect a dog in a 1M parameter model could be quite different

than that used by a 1B parameter model. What would stop a billion-parameter (and

counting) model from learning an overly complicated and distinct representation? One

key factor might be simplicity bias:

The Simplicity Bias Hypothesis

Deep networks are biased toward finding simple fits to the data, and the bigger

the model, the stronger the bias. Therefore, as models get bigger, we should

expect convergence to a smaller solution space.

Such simplicity bias could be coming from explicit regularization ℛ(𝑓) com-

monly used in deep learning (e.g., weight decay and dropout). However, even in

the absence of external influences, deep networks naturally adhere to Occam’s razor,

implicitly favoring simple solutions that fit the data (Solomonoff, 1964; Gunasekar

et al., 2018; Arora et al., 2019a; Valle-Perez et al., 2019; Huh et al., 2023; Dingle

et al., 2018; Goldblum et al., 2023). Figure 6-7 visualizes how simplicity bias can drive

convergence.

6.4 What representation are we converging to?

By now, we hope to have convinced the reader that task and data pressures, combined

with increasing model capacity, can lead to convergence. We next turn our attention

to what exactly is the endpoint of all this convergence.

Our central hypothesis, stated in Figure 6-1, is that the representation we are

converging toward is a statistical model of the underlying reality that generates our

observations. Consistent with the multitask scaling hypothesis, such a representation

would naturally be useful toward many tasks (or at least toward any task grounded in
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Solves task 1
<latexit sha1_base64="51NXQkDypcG/A+WtwXqm2WeyfWo=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc0WhJtLDHKRwIXsrfswYa923N3joRc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0jEo1402mpNKdgBouRcybKFDyTqI5jQLJ28H4du63J1wboeJHnCbcj+gwFqFgFK3kPyg54YYgNWPi9csVt+ouQNaJl5MK5Gj0y1+9gWJpxGNkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rU0phE3frY4ekYurDIgodK2YiQL9fdERiNjplFgOyOKI7PqzcX/vG6K4bWfiThJkcdsuShMJUFF5gmQgdCcoZxaQpkW9lbCRlRThjankg3BW315nbRqVc+teve1Sv0mj6MIZ3AOl+DBFdThDhrQBAZP8Ayv8OZMnBfn3flYthacfOYU/sD5/AEMH5Ga</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit><latexit sha1_base64="FW6agll44/+cHGyWR3ULXYfdBVs=">AAACGXicjVC7TsMwFL3hWcqrwMhiUSExVUkXGCtYGEHQh9RGleM6rVXHCfZNpSrqdzCw8CssCDHCxN/gthmgZeBIlo7OOVfX9wSJFAZd98tZWV1b39gsbBW3d3b39ksHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBq6jdHXBsRq3scJ9yPaF+JUDCKVvLvYjnihiA1Q+J1S2W34s5AlomXkzLk+F+8W/ro9GKWRlwhk9SYtucm6GdUo2CST4qd1PCEsiHt87alikbc+Nnssgk5tUqPhLG2TyGZqT8nMhoZM44Cm4woDsyiNxX/8tophhd+JlSSIldsvihMJcGYTGsiPaE5Qzm2hDIt7F8JG1BNGdoyi/Z0b/HQZdKoVjy34t1Wy7XLvLMCHMMJnIEH51CDa7iBOjB4gEd4hlfnyXlx3pz3eXTFyWeO4Becz28Ob5kT</latexit>

Solves task
<latexit sha1_base64="vHe9mN3flA+xmkcJNFXcKeX8kHA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkveix68VjRfkAayma7aZdusmF3UiihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLUykMuu63s7G5tb2zW9or7x8cHh1XTk7bRmWa8RZTUuluSA2XIuEtFCh5N9WcxqHknXB8N/c7E66NUMkTTlMexHSYiEgwilbyH5WccEOQmnG/UnVr7gJknXgFqUKBZr/y1RsolsU8QSapMb7nphjkVKNgks/KvczwlLIxHXLf0oTG3AT54uQZubTKgERK20qQLNTfEzmNjZnGoe2MKY7MqjcX//P8DKObIBdJmiFP2HJRlEmCisz/JwOhOUM5tYQyLeythI2opgxtSmUbgrf68jpp12ueW/Me6tXGbRFHCc7hAq7Ag2towD00oQUMFDzDK7w56Lw4787HsnXDKWbO4A+czx8+nJE1</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit><latexit sha1_base64="oLuSoEdJx+dHxGxHzsUUdyqXKSE=">AAACF3icjVC7SgNBFL0bXzG+opY2g0GwCrtptAzaWCqaB2yWMDuZTYbM7iwzdwMh5DMsbPwVGxFb7fwbJ8kWmlh4YOBwzrncuSdMpTDoul9OYW19Y3OruF3a2d3bPygfHjWNyjTjDaak0u2QGi5FwhsoUPJ2qjmNQ8lb4fB65rdGXBuhkgccpzyIaT8RkWAUreTfKznihiA1w2654lbdOcgq8XJSgRz/i3fLn52eYlnME2SSGuN7borBhGoUTPJpqZMZnlI2pH3uW5rQmJtgMr9rSs6s0iOR0vYlSObqz4kJjY0Zx6FNxhQHZtmbiX95fobRZTARSZohT9hiUZRJgorMSiI9oTlDObaEMi3sXwkbUE0Z2ipL9nRv+dBV0qxVPbfq3dUq9au8syKcwCmcgwcXUIcbuIUGMFDwCM/w6jw5L86b876IFpx85hh+wfn4BjTtmK4=</latexit>

2<latexit sha1_base64="yq8/5g8NcY6cy0ADZKiGUGrj1YY=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc0UhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUqg3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0alXPrXqtWqVxm8dRhAu4hGvw4AYacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx97gYy0</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit><latexit sha1_base64="g11zAFHkyS//eho1X0Cng1EOxtU=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sTRgHpAsYXZyNxkyO7vMzAphyRdY2PgrNiK29nb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudB1Sax/LeTBP0IzqSPOSMGis1a4Nyxa26C5B14uWkAjn+Fx+UP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLa6ZkQurDEkYK/ukIQv150RGI62nUWCTETVjverNxb+8XmrCup9xmaQGJVsuClNBTEzm1ZAhV8iMmFpCmeL2r4SNqaLM2AJL9nRv9dB10q5VPbfqNWuVxnXeWRHO4BwuwYMraMAt3EELGCA8wjO8Ok/Oi/PmvC+jBSefOYVfcD6+AdgglC0=</latexit>

Hypothesis space
<latexit sha1_base64="tLmIljFWhXs/Bu7+r0Wbg/j8TVU="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc=">AAACxnicjVHbattAEF2rt8S9Oe1jX0RNoZRipLy0j6Htg19KW4idgFeY0XokL9mL2B0lFULQD+lrviZf0L/pynGgSUrpwMLZM2eYOTN5paSnJPk1iO7cvXf/wc7u8OGjx0+ejvaezb2tncCZsMq64xw8KmlwRpIUHlcOQecKj/KTj33+6BSdl9YcUlNhpqE0spACKFDL0WjaVJbW6KWPfQUCl6NxMkk2Ed8G6RaM2Tb+T77cGzR8ZUWt0ZBQ4P0iTSrKWnAkhcJuyGuPof0JlLgI0IBGn7Ubf138KjCruLAuPEPxhv2zogXtfaPzoNRAa38z15N/yy1qKt5nrTRVTWjEZaOiVjHZuF9WvJIOBakmABBOhlljsQYHgsJKh0Nu8ExYrcGsWm6s090izVqusCCu5uhonHInyzVx1/+Cy08Y3Dv8HCb5UqEDsu5Ny8GVWpoubKPkb3v0LyF8vxIGdH0EcmB8ZT12Ld+YLdrDrgsnSm8e5DaY70/SZJJ+2x8ffNjedoe9YC/Za5ayd+yATdlXNmOCnbKf7JxdRNPIRHV0dimNBtua5+xaRD9+Ay8H2vY=</latexit>

Simple
<latexit sha1_base64="zFVvUIF9Z2hD+LDeFqir1+TO8Qw=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvMJWt2947dPSGE/AcbC0Vs/T92/hs3yRWa+GDg8d4MM/OiVHBjff/bW1vf2NzaLuwUd/f2Dw5LR8dNk2SaYYMlItHtiBoUXGHDciuwnWqkMhLYikY3M7/1hNrwRD3YcYqhpAPFY86odVLznstUYK9U9iv+HGSVBDkpQ456r/TV7Scsk6gsE9SYTuCnNpxQbTkTOC12M4MpZSM6wI6jiko04WR+7ZScO6VP4kS7UpbM1d8TEyqNGcvIdUpqh2bZm4n/eZ3MxlfhhKs0s6jYYlGcCWITMnud9LlGZsXYEco0d7cSNqSaMusCKroQguWXV0mzWgn8SnBXLdeu8zgKcApncAEBXEINbqEODWDwCM/wCm9e4r14797HonXNy2dO4A+8zx+W+48e</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit><latexit sha1_base64="UD0yK0w0W+mMuOEwUpm4g629bNE=">AAACEnicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwgiCPqQ2qhz3pjW1k8h2kKqo/8DAwq+wIMTKxMbf4LYZoGXgSJaOzjlX1/cEieDauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeKYYPFIlbtgGoUPMKG4UZgO1FIZSCwFYwup37rAZXmcXRnxgn6kg4iHnJGjZWat1wmAnvlilt1ZyDLxMtJBXL8L94rf3b7MUslRoYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY2lEJWo/m500ISdW6ZMwVvZFhszUnxMZlVqPZWCTkpqhXvSm4l9eJzXhuZ/xKEkNRmy+KEwFMTGZ9kP6XCEzYmwJZYrbvxI2pIoyY1ss2dO9xUOXSbNW9dyqd1Or1C/yzopwBMdwCh6cQR2u4BoawOAeHuEZXp0n58V5c97n0YKTzxzCLzgf30Z6lpc=</latexit>

functions
<latexit sha1_base64="ha6+cYdMcIxvOCs6820nv4vYs8Q=">AAAB8HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZbnRZdOOygr1IO5RMmmlDk8yQZIQy9CncuFDErY/jzrcx085CW38IfPznHHLOHyaCG+t536i0sbm1vVPereztHxweVY9POiZONWVtGotY90JimOCKtS23gvUSzYgMBeuG09u83n1i2vBYPdhZwgJJxopHnBLrrMcoVTQHM6zWvLq3EF4Hv4AaFGoNq1+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd+hIpKZIFssPMcXzhnhKNbuKYsX7u+JjEhjZjJ0nZLYiVmt5eZ/tX5qo+sg4ypJLVN0+VGUCmxjnF+PR1wzasXMAaGau10xnRBNqHUZVVwI/urJ69Bp1H2v7t83as2bIo4ynME5XIIPV9CEO2hBGyhIeIZXeEMavaB39LFsLaFi5hT+CH3+ADubkKs=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit><latexit sha1_base64="L1hfgXbk9HOQP+EH+uD2lOyEqio=">AAACFXicjVDLSgMxFL3xWeur6tJNsAiuykw3uiy6calgH9IOJZNm2tAkMyQZoQz9Chdu/BU3Im4Fd/6NmXYW2rrwQOBwzrnc3BMmghvreV9oZXVtfWOztFXe3tnd268cHLZMnGrKmjQWse6ExDDBFWtabgXrJJoRGQrWDsdXud9+YNrwWN3ZScICSYaKR5wS66T7KFU0J6ZfqXo1bwa8TPyCVKHA/+L9ymdvENNUMmWpIMZ0fS+xQUa05VSwabmXGpYQOiZD1nVUEclMkM2umuJTpwxwFGv3lMUz9edERqQxExm6pCR2ZBa9XPzL66Y2uggyrpLUMkXni6JUYBvjvCI84JpRKyaOEKq5+yumI6IJta7IsjvdXzx0mbTqNd+r+bf1auOy6KwEx3ACZ+DDOTTgGm6gCRQkPMIzvKIn9ILe0Ps8uoKKmSP4BfTxDSCUmCQ=</latexit>

Functions that solve
<latexit sha1_base64="qY5BReh17p74a3n3nJbos5lx5Kk=">AAAB/XicbZDLSgMxFIYz9VbrrV52boJFcFVmutFlURCXFewF2qFk0kwbmkmG5EyhDsVXceNCEbe+hzvfxkw7C239IfDxn3M4J38QC27Adb+dwtr6xuZWcbu0s7u3f1A+PGoZlWjKmlQJpTsBMUxwyZrAQbBOrBmJAsHawfgmq7cnTBuu5ANMY+ZHZCh5yCkBa/XLJ7eJpBkaDCMC2CgxYf1yxa26c+FV8HKooFyNfvmrN1A0iZgEKogxXc+NwU+JBk4Fm5V6iWExoWMyZF2LkkTM+On8+hk+t84Ah0rbJwHP3d8TKYmMmUaB7YwIjMxyLTP/q3UTCK/8lMs4ASbpYlGYCAwKZ1HgAdeMgphaIFRzeyumI6IJBRtYyYbgLX95FVq1qudWvftapX6dx1FEp+gMXSAPXaI6ukMN1EQUPaJn9IrenCfnxXl3PhatBSefOUZ/5Hz+AI0ilUQ=</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit><latexit sha1_base64="IdZuo/QJSVV7D8Pplh4p+drN71E=">AAACInicjVDLSgMxFM3UV62v8bFzEyyCqzLTjS6LgrhUsA9oh5JJM21oJhmSO4Va+i8u3PgrbkRdCX6MmXYW2rrwQOBwzrnc3BMmghvwvE+nsLK6tr5R3Cxtbe/s7rn7Bw2jUk1ZnSqhdCskhgkuWR04CNZKNCNxKFgzHF5lfnPEtOFK3sM4YUFM+pJHnBKwUtc9uk4lzajBMCCAjRIj1nXLXsWbAS8TPydllON/8a773ukpmsZMAhXEmLbvJRBMiAZOBZuWOqlhCaFD0mdtSyWJmQkmsxOn+NQqPRwpbZ8EPFN/TkxIbMw4Dm0yJjAwi14m/uW1U4guggmXSQpM0vmiKBUYFM76wj2uGQUxtoRQze1fMR0QTSjYVkv2dH/x0GXSqFZ8r+LfVcu1y7yzIjpGJ+gM+egc1dANukV1RNEDekTP6NV5cl6cN+djHi04+cwh+gXn6xsLXpy9</latexit>

the tasks
<latexit sha1_base64="kHNBGIL9Xh/D+2bTV1fyNlwdkTY=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe7SaBm0sYxgPiQ5wt5mkyzZ3Tt254Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJVJY9P1vr7CxubW9U9wt7e0fHB6Vj09aNk4N400Wy9h0Imq5FJo3UaDkncRwqiLJ29Hkdu63n7ixItYPOE14qOhIi6FgFJ30iGNOkNqJ7ZcrftVfgKyTICcVyNHol796g5ilimtkklrbDfwEw4waFEzyWamXWp5QNqEj3nVUU8VtmC0OnpELpwzIMDauNJKF+nsio8raqYpcp6I4tqveXPzP66Y4vA4zoZMUuWbLRcNUEozJ/HsyEIYzlFNHKDPC3UrYmBrK0GVUciEEqy+vk1atGvjV4L5Wqd/kcRThDM7hEgK4gjrcQQOawEDBM7zCm2e8F+/d+1i2Frx85hT+wPv8Ab3BkFk=</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit><latexit sha1_base64="HQzqcZXPyQIUEQ3C41blEr90t9E=">AAACFXicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzkGQJs5PZZMjM7DJzVwghX2Fh46/YiNgKdv6Nk2QLTSw8MHA451zu3BOlUlj0/S9vZXVtfWOzsFXc3tnd2y8dHDZskhnG6yyRiWlF1HIpNK+jQMlbqeFURZI3o+HV1G8+cGNFou9wlPJQ0b4WsWAUnXSPA06Q2qHtlsp+xZ+BLJMgJ2XI8b94t/TZ6SUsU1wjk9TaduCnGI6pQcEknxQ7meUpZUPa521HNVXchuPZVRNy6pQeiRPjnkYyU39OjKmydqQil1QUB3bRm4p/ee0M44twLHSaIddsvijOJMGETCsiPWE4QzlyhDIj3F8JG1BDGboii+70YPHQZdKoVgK/EtxWy7XLvLMCHMMJnEEA51CDa7iBOjBQ8AjP8Oo9eS/em/c+j654+cwR/IL38Q2W4JfS</latexit>

Hypothesis space
<latexit sha1_base64="tLmIljFWhXs/Bu7+r0Wbg/j8TVU="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit><latexit sha1_base64="DEUQt5Kk9QbDYQMJ1vZ14+xLeyc="></latexit>

simplicity bias
<latexit sha1_base64="9hYX6Wjy0VHKyxplovop/5+4+qY=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0l60WPRi8cK9gPaUDbbTbt0Nwm7EyGW/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvTKUw6Hnfzsbm1vbObmmvvH9weFRxj0/aJsk04y2WyER3Q2q4FDFvoUDJu6nmVIWSd8LJ7dzvPHJtRBI/YJ7yQNFRLCLBKFpp4FaMUHYPE5iTUFAzcKtezVuArBO/IFUo0By4X/1hwjLFY2SSGtPzvRSDKdUomOSzcj8zPKVsQke8Z2lMFTfBdHH4jFxYZUiiRNuKkSzU3xNTqozJVWg7FcWxWfXm4n9eL8PoOpiKOM2Qx2y5KMokwYTMUyBDoTlDmVtCmRb2VsLGVFOGNquyDcFffXmdtOs136v59/Vq46aIowRncA6X4MMVNOAOmtACBhk8wyu8OU/Oi/PufCxbN5xi5hT+wPn8Afmyk0U=</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit>

simplicity bias
<latexit sha1_base64="9hYX6Wjy0VHKyxplovop/5+4+qY=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0l60WPRi8cK9gPaUDbbTbt0Nwm7EyGW/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvTKUw6Hnfzsbm1vbObmmvvH9weFRxj0/aJsk04y2WyER3Q2q4FDFvoUDJu6nmVIWSd8LJ7dzvPHJtRBI/YJ7yQNFRLCLBKFpp4FaMUHYPE5iTUFAzcKtezVuArBO/IFUo0By4X/1hwjLFY2SSGtPzvRSDKdUomOSzcj8zPKVsQke8Z2lMFTfBdHH4jFxYZUiiRNuKkSzU3xNTqozJVWg7FcWxWfXm4n9eL8PoOpiKOM2Qx2y5KMokwYTMUyBDoTlDmVtCmRb2VsLGVFOGNquyDcFffXmdtOs136v59/Vq46aIowRncA6X4MMVNOAOmtACBhk8wyu8OU/Oi/PufCxbN5xi5hT+wPn8Afmyk0U=</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit><latexit sha1_base64="2c5HZptIFuLSIg5wRrHLe0x+A4o=">AAACHXicjVC7SgNBFL3rM8ZHVi1tBoNgFXbTaBm0sVQwD0iWMDuZTYbM7C4zd4Ul5EssbPwVGxELG/FvnCRbaGLhgYHDOfdy55wwlcKg5305a+sbm1vbpZ3y7t7+QcU9PGqZJNOMN1kiE90JqeFSxLyJAiXvpJpTFUreDsfXM7/9wLURSXyPecoDRYexiASjaKW+WzFC2TtMYE5CQU3frXo1bw6ySvyCVKHA/8b77kdvkLBM8RiZpMZ0fS/FYEI1Cib5tNzLDE8pG9Mh71oaU8VNMJmnm5IzqwxIlGj7YiRz9efGhCpjchXaSUVxZJa9mfiX180wugwmIk4z5DFbHIoySTAhs6rIQGjOUOaWUKaF/SthI6opQ1to2Ub3l4Oukla95ns1/65ebVwVnZXgBE7hHHy4gAbcwC00gUEGj/AMr86T8+K8Oe+L0TWn2DmGX3A+vwE0lJq+</latexit>
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Figure 6-7: The Simplicity Bias Hypothesis: Larger models have larger coverage of all
possible ways to fit the same data. However, the implicit simplicity biases of deep networks
encourage larger models to find the simplest of these solutions.

reality). Additionally, this representation might be relatively simple, assuming that

scientists are correct in suggesting that the fundamental laws of nature are indeed

simple functions (Gell-Mann, 1995), in line with the simplicity bias hypothesis.

But what exactly do we mean by “a statistical model of the underlying reality.”

In this section, we formalize one definition with concrete mathematical statements.

Importantly, this section should be read as just one concrete candidate for the form of

the platonic representation; other candidates could be arrived at from other modeling

assumptions.

6.4.1 An idealized world

We consider a world that works as follows, consistent with the cartoon in Figure 6-1.

The world consists of a sequence of 𝑇 discrete events, denoted as Z , [𝑧1, . . . , 𝑧𝑇 ],

sampled from some unknown distribution P(Z). Each event can be observed in various

ways. An observation is a bijective, deterministic function obs : 𝒵 → · that maps

events to an arbitrary measurement space, such as pixels, sounds, mass, force, torque,

words, etc. Later, in Section 6.6, we discuss limitations and potential extensions to
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Contrastive Learning (SimCSE)
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Predictive Learning (RoBERTa)

Figure 6-8: Color cooccurrence in VISION and LANGUAGE yields perceptual
organization: Similar representations of color are obtained via, from LEFT to RIGHT,
the perceptual layout from CIELAB color space, cooccurrence in CIFAR-10 images, and
language cooccurrence modeling (Gao et al. (2021); Liu et al. (2019); computed roughly
following Abdou et al. (2021)). Details in Appendix E.4.

continuous and unbounded worlds, and stochastic observations, that could yield a

model that better reflects real learning scenarios.

One can think of an event as corresponding to the state of the world at some point

in time3, but it is also fine to simply consider an event as any variable that indexes

observations, with no further physical meaning4.

In this idealized world, knowing P(Z) would be useful for many kinds of predictions;

this would constitute a world model over the events that cause our observations (Wer-

bos, 1987; Ha and Schmidhuber, 2018; Richens and Everitt, 2024). We will next show

that a particular representation of P(Z) is recovered by certain contrastive learners.

6.4.2 A family of contrastive learners converge to a represen-

tation of P(Z)

Consider a contrastive learner that models observations that cooccur together. For

simplicity, we ground our discussion with the following definition of the cooccurrence

probability, 𝑃coor, of two observations 𝑥𝑎 and 𝑥𝑏 both occurring within some window

3Here we only analyze temporal sequences, but note that the same could be done with respect to
events laid out in space instead.

4This latter interpretation may be more consistent with Plato’s intent. Scholars have argued that
his allegory of the cave rejects any notion of a true world state (Nettleship, 1897). Instead, we could
say that the joint distribution of observation indices is itself the platonic reality.
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𝑇window:

𝑃coor(𝑥𝑎, 𝑥𝑏) ∝
∑︁

(𝑡,𝑡′) : |𝑡−𝑡′|≤𝑇window

P(𝑋𝑡 = 𝑥𝑎, 𝑋𝑡′ = 𝑥𝑏).

Analogously, we can define 𝑃coor for Z and other observation modalities. Note that

𝑃coor is symmetric.

Consider positive pairs as two observations nearby in time (sampled from 𝑃coor) and

negative pairs as observations drawn from any point in time (sampled independently

from the marginal). Our contrastive learner tries to classify if a pair is positive or

negative by learning a representation 𝑓𝑋 : 𝑋 → R𝑑 such that the dot-product kernel

approximates the log odds ratio up to some offset:

⟨𝑓𝑋(𝑥𝑎), 𝑓𝑋(𝑥𝑏)⟩ ≈ log
P(pos | 𝑥𝑎, 𝑥𝑏)
P(neg | 𝑥𝑎, 𝑥𝑏)

+ 𝑐𝑋(𝑥𝑎) (6.3)

= log
𝑃coor(𝑥𝑎 | 𝑥𝑏)
𝑃coor(𝑥𝑎)

+ 𝑐𝑋(𝑥𝑎) (6.4)

= 𝐾PMI(𝑥𝑎, 𝑥𝑏) + 𝑐𝑋(𝑥𝑎), (6.5)

where 𝐾PMI is the pointwise mutual information (PMI) kernel, and 𝑐𝑋(𝑥𝑎) is constant

in 𝑥𝑏. We note that this is a common setting for self-supervised contrastive learners

with NCE objectives (Gutmann and Hyvärinen, 2010; Oord et al., 2018), including

SimCLR (Chen et al., 2020a) and SimCSE (Gao et al., 2021). (See Oord et al. (2018)

and Appendix E.6.1 for detailed derivations.)

Under mild conditions that the world is smooth enough (see Appendix E.6.2), a

choice of 𝑓𝑋 can exactly represent 𝐾PMI:

⟨𝑓𝑋(𝑥𝑎), 𝑓𝑋(𝑥𝑏)⟩ = 𝐾PMI(𝑥𝑎, 𝑥𝑏) + 𝑐𝑋 , (6.6)

where we observed that 𝑐𝑋(𝑥𝑎) from Equation (6.5) must be a constant since both

sides are symmetric.

Therefore, the contrastive learners we consider are minimized by a representation 𝑓𝑋

whose kernel is 𝐾PMI (up to a constant offset). With sufficient data and optimization,
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we will observe convergence to this point.

Thus we have convergence to a representation of the statistics of 𝑋, but what

about 𝑍? Recall that our idealized world consists of bijective observation functions,

which, over discrete random variables, preserve probabilities. So we have:

𝑃coor(𝑥𝑎, 𝑥𝑏) = 𝑃coor(𝑧𝑎, 𝑧𝑏)

𝐾PMI(𝑥𝑎, 𝑥𝑏) = 𝐾PMI(𝑧𝑎, 𝑧𝑏),

where we use 𝑃coor and 𝐾PMI in a modality-agnostic way to emphasize that different

modalities share the same these quantities.

All these arguments hold not just for 𝑋 but also for 𝑌 (or any other bijective,

discrete modality), implying:

𝐾PMI(𝑧𝑎, 𝑧𝑏) = ⟨𝑓𝑋(𝑥𝑎), 𝑓𝑋(𝑥𝑏)⟩ − 𝑐𝑋 (6.7)

= ⟨𝑓𝑌 (𝑦𝑎), 𝑓𝑌 (𝑦𝑏)⟩ − 𝑐𝑌 . (6.8)

Therefore, for any modality in our idealized world, we observe representational conver-

gence to the same kernel, which represents certain pairwise statistics of P(Z).

This analysis suggests that certain representation learning algorithms may boil

down to a simple rule: find an embedding in which similarity equals PMI. We note that

this idea is consistent with prior works that have used PMI as a similarity measure for

clustering in vision and language (e.g., Isola et al. (2014); Isola (2015a); Isola et al.

(2016); Chambers and Jurafsky (2008)).

A study in color We conduct a case study to verify that convergence does happen

on real data. Abdou et al. (2021) discovered that color distances in learned language

representations, when trained to predict cooccurrences in text (Devlin et al., 2018),

closely mirror human perception of these distances, which we reproduce in Figure 6-8

with both contrastive and predictive models. Interestingly, they noted an increasing

similarity as models scale larger and become better at modeling text cooccurrences.

In Figure 6-8, we also learn representations of color based on 𝐾PMI from cooccurrences
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in images. Indeed, learning cooccurrence statistics in either domain recovers roughly

the same perceptual representation. Details of this experiment are described in

Appendix E.4.

We believe that our simple model encapsulates essential aspects of complex real-

world systems, and offers a path toward understanding the representation that models

are converging to—a unified model that is proficient across various domains and

modalities, grounded in the statistical properties of the underlying world. Section 6.6

further elaborates some limitations.

6.5 What are the implications of convergence?

Scaling is sufficient, but not necessarily efficient Our arguments are roughly

in line with the claim that “scale is all you need” to reach high levels of intelligence.

We have argued that as resources are scaled (# parameters, # datapoints, # flops),

representations are converging, regardless of other modeling choices and even data

modality. Does this mean that scale is all that matters? Not quite: different methods

can scale with different levels of efficiency (Hestness et al., 2017; Kaplan et al.,

2020), and successful methods must still satisfy some general requirements (e.g., be a

consistent estimator, model pairwise statistics of P(Z)).

Training data can be shared across modalities Suppose you have access to

𝑁 images and 𝑀 sentences, and want to learn the best representation. If there is

indeed a modality-agnostic platonic representation, then both image and language

data should help find it. The implication is that if you want to train the best vision

model, you should train not just on 𝑁 images but also on 𝑀 sentences. This is already

becoming common practice (OpenAI, 2023; Radford et al., 2021). Many vision models

are finetuned from pre-trained LLMs. The other direction is less common, but also

is implied by our hypothesis: if you want to build the best LLM, you should also

train on image data. Indeed, OpenAI (2023) showed that training on images improved

performance on text. In theory, there should be some conversion ratio: a pixel is worth
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𝑎 words for training LLMs, and a word is worth 𝑏 pixels for training vision models.

Ease of translation and adaptation across modalities When two representa-

tions are aligned, transitioning from one to the other should be a simple function

that’s easily obtained. Our hypothesis could explain the phenomenon that conditional

generation is easier than unconditional (Mirza and Osindero, 2014; Liu et al., 2020;

Sauer et al., 2022), as the data we condition on may have the same platonic struc-

ture as the data we are generating. In line with this, recent work has found that

representation-conditioning is even easier (Li et al., 2023). Similarly, representational

convergence could act as a bridge that lets us find mappings between domains even

without paired data; this may underlie the success of unpaired translation in vision

(Zhu et al., 2017; Shi et al., 2024; Xie et al., 2022) and language (Tran et al., 2017;

Lample et al., 2018). We emphasize that this doesn’t mean that models trained on

a single modality (e.g., language) can immediately process raw data from another

(e.g., vision). What makes them adaptable to the new modalities is that they share a

common modality-agnostic representation, and can readily process representations of

new modalities. Furthermore, this implies that language models would achieve some

notion of grounding in the visual domain even in the absence of cross-modal data5.

The primary advantage of cross-modal data could then simply be sample efficiency.

Scaling may reduce hallucination and bias A prominent shortcoming of current

LLMs is their propensity to hallucinate, or output false statements. If models are indeed

converging toward an accurate model of reality, and scale powers this convergence,

then we may expect hallucinations to decrease with scale. Of course, our hypothesis is

conditioned on the training data for future models constituting a sufficiently lossless

and diverse set of measurements. This may not come to pass, but it is an implication

of our hypothesis worth pointing out. A similar argument can be made about certain

5In 1688, William Molyneux asked if a person born blind, upon gaining sight, could distinguish
shapes by vision alone (Locke, 1690). Our arguments suggest they could not do so immediately, but
after some visual experience, they could easily map shapes to their prior touch-based representations.
Empirical data supports this, showing that congenitally blind children given sight can quickly learn
these abilities (Held et al., 2011).
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kinds of bias. It has been shown that large models can exacerbate existing biases

present in their training data (Hall et al., 2022). Our hypothesis implies that, while

this may be true, we should expect larger models to amplify bias less. This does not

mean bias will be removed, rather that the model’s biases will more accurately reflect

the data’s biases, rather than exacerbating them.

6.6 Counterexamples and limitations

Different modalities may contain different information One immediate ob-

jection to our hypothesis is: what about the information that is unique to a given

modality? Can language really describe the ineffable experience of watching a total

solar eclipse? Or, how could an image convey the a concept like “I believe in the

freedom of speech,” which is easy to write in English? Two different models cannot

converge to the same representation if they have access to fundamentally different

information.

More precisely, our mathematical argument in Section 6.4 only strictly holds for

bijective projections of Z, so that the information in all the projections is equivalent

to the information in the underlying world. This will not hold true for either lossy

or stochastic observation functions. Nonetheless, similar arguments have been made

theoretically and empirically that cooccurrence relations are learned by practical

contrastive (Chapter 2; Zimmermann et al. (2021)) and predictive learners (Papyan

et al., 2020; Roeder et al., 2021). Lu et al. (2021) and Mirchandani et al. (2023) also

showed that models trained to autoregressively generate text also capture statistical

relations in many other modalities, including symbolic reasoning, vision, protein

folding, and robotics.

A more nuanced version of our hypothesis will need to be developed to handle

the case of non-bijective observations and abstract concepts. A starting point could

be: different models will converge to the same representation when the input signals

are sufficiently high information and the models are sufficiently high capacity ; when

they are not, the lower-information representation will only align with the higher-

152



5 words 10 words 20 words 30 words
DCI Caption density

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A
lig

nm
en

t t
o 

vi
si

on

ImageNet21K
MAE
DINOv2
CLIP
CLIP (I12K ft)

Figure 6-9: Increasing caption density improves alignment: We vary caption length
using the Densely-Captioned-Images (DCI) dataset (Urbanek et al., 2023). Starting from a
dense caption, we used LLaMA3-8B-Instruct (Meta, 2024) to summarize and generate coarse-
grained captions. We compute the average alignment score across all vision and language
models with standard deviation measured over the language models we evaluated. With
denser captions, the mapping may become more bijective, leading to improved language-vision
alignment scores.

information one up to a level capped by the mutual information between the input

signals and by the capacity of each model. This cap might or might not be practically

important. Popular representations like CLIP are explicitly optimized to only capture

the shared information between vision and language, yet are highly successful on many

pure vision tasks. We perform a preliminary test of the effect of information level

in Figure 6-9 (detailed in Appendix E.5), and find that the more descriptive (higher

information) a caption is, the better its LLM representation aligns with the visual

representation of the corresponding image.

Not all representations are presently converging Our argument has mainly

focused on two modalities: vision and language. While we do expect other modalities

will follow similar trends, we have yet to see the same level of convergence across

all domains. For example, in robotics there is not yet a standardized approach to

representing world states in the same way as there is for representing images and text.
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One limitation lies in the hardware used in robotics, which is often expensive and

slow. This creates a bottleneck in the quantity and diversity of training data.

Sociological bias in producing AI models Researcher bias and collective pref-

erences within the AI community have shaped the trajectory of model development.

There is often an explicit or implicit goal of designing AI systems that mimic human

reasoning and performance, and this could lead to convergence toward human-like

representations even if other kinds of intelligence are in fact possible. Additionally,

the “hardware lottery” (Hooker, 2021) suggests that the success of AI models can also

depend on the compatibility of their design with available computational architectures,

further contributing to convergent trends.

Special-purpose intelligences might not converge Different intelligent systems

can be designed to accomplish different tasks. For instance: A bioinformatics systems

might predict protein structure; an autonomous vehicle might follow lanes on highways.

It’s possible that not much is shared between these two narrow tasks. Our argument

only holds for intelligences that are optimized to perform well on many tasks. We have

argued that a representation of reality is a structure that is useful across many tasks,

but for any special purpose there may be shortcuts, or even effective representations

detached from reality. Such shortcuts may be more efficient and necessary for continued

improvements in specific domains. This will become more relevant if continued scaling

comes up against boundary conditions around resources like energy and compute.

How do we measure alignment? We focused on one particular alignment measure,

mutual nearest-neighbor, in our experiments, and cited experiments using several

others. However, there is active debate on the merits and deficiencies of all these ways

of measuring alignment (Bansal et al., 2021; Sucholutsky et al., 2023). We discuss our

choice and show results for other alignment metrics in Appendix E.1.

Lots left to explain We have shown results where different models arrive at

similar but not the same representations. For example, in Figure 6-3, alignment
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clearly increases but only reaches a score of 0.16, according to our mutual nearest-

neighbor metric. The maximum theoretical value for this metric is 1. Is a score of

0.16 indicative of strong alignment with the remaining gap being “noise” or does it

signify poor alignment with major differences left to explain? We leave this as an

open question.
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Chapter 7

Epilogue: Towards the Platonic

Representation via Pretraining and

Adaptation

If the Platonic representation is an important missing piece in intelligent agents,

how can we work towards recovering it? To make progress, we need to combine

different sources and modalities, which are different projections about the reality

(Figure 7-1). However, simultaneously training on all projections is both impractical

and infeasible. Handling different projections requires different training paradigms,

and some projections come in the form of interaction (e.g., reinforcement learning

problems) where a pretrained agent need to interact with and adapt to the world.

Furthermore, current best vision language models (VLMs) are obtained via finetuning

a text-only pretrained model (Liu et al., 2023). Therefore, we argue that the most

promising approach would require adapting pretrained models to new concepts and

associations, and adaptation are the biggest challenges towards Platonic representation

for intelligent agents. Towards this goal, we highlight several important questions

focused on pretrained models and adaptation as future directions.
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Figure 7-1: Recovering the Platonic representation by combining different sources (projections)
and adapting to new ones. This dissertation explored multiple parts of the arrows (bold
and underlined). Figure is repeated from Figure 1-1.

7.1 Understand what is missing in pretrained models

Pretraining is powerful but is generally limited to specific projections (i.e., datasets

and modalities), and does not capture the full statistical structure of reality. To explore

what is missing, we can probe the information delta between different projections :

Q: If we take a model trained for one projection (i.e., task, modality and/or

objective) and try to extract representation or knowledge for another task

or domain, how can we quantify what is missing?

Towards better understanding, some specific questions we can ask are:

1. Does a vision model understand “I believe in freedom of speech”?

2. Does an LLM know decision-making structures (e.g., value function 𝑉 , invari-

ances, symmetry)?

3. Does a video prediction model capture real world dynamics well enough for

planning?
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Figure 7-2: Current LLMs fail to recognize invariances in game playing. Example shows
LLaMA-3 8B with Tic-Tac-Toe. Similar failures are observed over GPT-4.

Figure 7-3: The Billiard-2D synthetic video dataset. We design synthetic video
data where objects evolve following simple physics-like rules in a 2-D plane. Our dataset
generation process is highly configurable, producing videos of various complexities, as shown
above. This flexible and controlled process enables us to analyze different world modeling
approaches on (1) their scaling properties of recovering the underlying “physics laws”, and
(2) the planning capabilities for building general goal-directed agents.

One way to approach these questions is to create synthetic tasks that capture their

essence but also allows full access to control and extract the groundtruth information.

For example, to explore the capability of current video prediction models, we created

a synthetic 2D dataset Figure 7-3 where the full access to data generation allows us

to explore various planning, modeling, and conditioning scenarios. Similarly, we can

use controlled game-playing tasks to understand LLMs’ decision-making capabilities

(Figure 7-2). We expect such methodology to provide novel insights into the limitations

of current pretraining paradigms, as well as how to best improve them.
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Figure 7-4: While the current LLMs do not play games well (Figure 7-2), how can we best
teach them a simple new concept in Tic-Tac-Toe, ideally without much data or supervision,
so that they can use it to improve general decision-making performance (i.e., over many
different yet similar board scenarios)?

7.2 Adapt pretrained models

The information we have access about the reality is dynamic and constantly increasing.

Static models are unlikely to recover the full statistical structure of reality, and to

account for the missing information in models pretrained over limited projections.

The key question is about adaptation:

Q: How can a model efficiently interact with the reality, explore, generate and

verify hypotheses, and internalize them as knowledge in its representations?

The emphasis is on “efficiency”. The most interesting and crucial difference about

the adaptation setting is that we start with a good pretrained model that already

captures the structures of reality to some extent. Proper adaptation should utilize

this existing knowledge so that discovering and internalizing new knowledge is both

efficient and effective. For example, an LLM is trained on Internet-scale data on

various challenging games. If we teach it a new concept for playing Tic-Tac-Toe, the

LLM should not need thousands examples or games to understand it. How can an

LLM quickly pick up a new piece of knowledge and apply it to many different tasks

(Figure 7-4)?

Towards adaptation, some specific questions we can ask are:

1. Can an LLM automatically discover and internalize useful concepts to improve?

2. How do adaptation data and objectives modify model behavior?

3. How to combine different pretrained models?
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7.3 Intelligent agent ≡ automating science?

Figure 7-5: A capable intelligent agent should have a good model of the Platonic representation
that captures the true reality. The process towards recovering this representation shares
similarities with the scientific method in research.

A good model of the Platonic representation that captures the true reality could

be a core component of an intelligent agent. As argued in this chapter, we believe

that the path towards a Platonic representation of reality involves:

1. pretraining on existing knowledge,

2. combining multiple sources of information with adaptation, and

3. interact with the reality to explore, verify, and internalize.

This process to seek the true reality is strikingly similar to the scientific method

for research (Figure 7-5). Both processes perform the search for truth, so it may not

be too surprising that the best approaches coincide. However, the difference is in

how the obtained knowledge is stored. In scientific studies, knowledge about the true

reality is stored in human-understandable forms, such as academic papers, textbooks,

educational videos, etc. In artificial models, we believe that knowledge is stored in the

form of representations.
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The consistent theme throughout this dissertation is a study on the relationship

between model representations and knowledge of the world. In future, I strive to

continue research towards better machine learning model representations of the reality,

models that also assist scientific research, and ultimately an intelligent agent that

captures the reality in its representations.
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Appendix A

Proofs, Details, and Additional

Discussions for Chapter 2

A.1 Proofs and Additional Theoretical Analysis

In this section, we present proofs for propositions and theorems in Sections 2.4.1

and 2.4.2.

The propositions in Section 2.4.1 illustrate the deep relations between the Gaussian

kernel 𝐺𝑡 : 𝒮𝑑 ×𝒮𝑑 → R and the uniform distribution on the unit hypersphere 𝒮𝑑. As

we will show below in Appendix A.1.1, these properties directly follow well-known

results on strictly positive definite kernels.

In Appendix A.1.2, we present a proof for Theorem 2.4.7. Theorem 2.4.7 describes

the asymptotic behavior of ℒcontrastive as the number of negative samples 𝑀 approaches

infinity. The theorem is strongly related to empirical contrastive learning, given an

error term (deviation from the limit) decaying in 𝒪(𝑀−1/2) and that empirical practices

often use a large number of negatives (e.g., 𝑀 = 65536 in He et al. (2019)) based on

the observation that using more negatives consistently leads to better representation

quality (Wu et al., 2018; Tian et al., 2020b; He et al., 2019). Our proof further reveals

connections between ℒcontrastive and ℒuniform which is defined via the Gaussian kernel.

Finally, also in Appendix A.1.2, we present a weaker result on the setting where

only a single negative is used in ℒcontrastive (i.e., 𝑀 = 1).
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A.1.1 Proofs for Section 2.4.1 and Properties of ℒuniform

To prove Proposition 2.4.2 and 2.4.4, we utilize the strict positive definiteness (Bochner,

1992; Stewart, 1976) of the Gaussian kernel 𝐺𝑡:

𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡, 𝑡 > 0.

From there, we apply a known result about such kernels, from which the two proposi-

tions directly follow.

Definition A.1.1 (Strict positive definiteness (Bochner, 1992; Stewart, 1976)). A

symmetric and lower semi-continuous kernel 𝐾 on 𝐴 × 𝐴 (where 𝐴 is infinite and

compact) is called strictly positive definite if for every finite signed Borel measure 𝜇

supported on 𝐴 whose energy

𝐼𝐾 [𝜇] ,
∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐾(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

is well defined, we have 𝐼𝐾 [𝜇] ≥ 0, where equality holds only if 𝜇 ≡ 0 on the 𝜎-algebra

of Borel subsets of 𝐴.

Definition A.1.2. Let ℳ(𝒮𝑑) be the set of Borel probability measures on 𝒮𝑑.

We are now in the place to apply the following two well-known results, which

we present by restating Proposition 4.4.1, Theorem 6.2.1 and Corollary 6.2.2 of

Borodachov et al. (2019) in weaker forms. We refer readers to Borodachov et al. (2019)

for their proofs.

Lemma A.1.3 (Strict positive definiteness of 𝐺𝑡). For 𝑡 > 0, the Gaussian

kernel 𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡 is strictly positive definite on 𝒮𝑑 × 𝒮𝑑.

Lemma A.1.4 (Strictly positive definite kernels on 𝒮𝑑). Consider kernel𝐾𝑓 : 𝒮𝑑×

𝒮𝑑 → (−∞,+∞] of the form,

𝐾𝑓 (𝑢, 𝑣) , 𝑓(‖𝑢− 𝑣‖22). (A.1)
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If 𝐾𝑓 is strictly positive definite on 𝒮𝑑 × 𝒮𝑑 and 𝐼𝐾𝑓 [𝜎𝑑] is finite, then 𝜎𝑑 is the

unique measure (on Borel subsets of 𝒮𝑑) in the solution of min𝜇∈ℳ(𝒮𝑑) 𝐼𝐾𝑓 [𝜇], and the

normalized counting measures associated with any 𝐾𝑓 -energy minimizing sequence of

𝑁 -point configurations on 𝒮𝑑 converges weak* to 𝜎𝑑.

In particular, this conclusion holds whenever 𝑓 has the property that −𝑓 ′(𝑡) is

strictly completely monotone on (0, 4] and 𝐼𝐾𝑓 [𝜎𝑑] is finite.

We now recall Propositions 2.4.2 and 2.4.4.

Proposition 2.4.2. 𝜎𝑑 is the unique solution (on Borel subsets of 𝒮𝑑) of

min
𝜇∈ℳ(𝒮𝑑)

𝐼𝐺𝑡 [𝜇] = min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢). (A.2)

Proof of Proposition 2.4.2. This is a direct consequence of Lemmas A.1.3 and A.1.4.

Proposition 2.4.4. For each 𝑁 > 0, the 𝑁 point minimizer of the average pairwise

potential is

u*
𝑁 = argmin

𝑢1,𝑢2,...,𝑢𝑁∈𝒮𝑑

∑︁
1≤𝑖<𝑗≤𝑁

𝐺𝑡(𝑢𝑖, 𝑢𝑗).

The normalized counting measures associated with the {u*
𝑁}∞𝑁=1 sequence converge

weak* to 𝜎𝑑.

Proof of Proposition 2.4.4. This is a direct consequence of Lemmas A.1.3 and A.1.4.

More Properties of ℒuniform

Range of ℒuniform. It’s not obvious what the optimal value of ℒuniform is. In the

following proposition, we characterize the exact range of the expected Gaussian

potential and how it evolves as dimensionality increases. The situation for ℒuniform

directly follows as a corollary.

Proposition A.1.5 (Range of the expected pairwise Gaussian potential 𝐺𝑡).

For 𝑡 > 0, the expected pairwise Gaussian potential w.r.t. Borel probability measure
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𝜇 ∈ ℳ(𝒮𝑑)

𝐼𝐺𝑡 [𝜇] =

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

has range [𝑒−2𝑡
0𝐹 1(;

𝑑+1
2
; 𝑡2), 1], where 0𝐹 1 is the confluent hypergeometric limit func-

tion defined as

0𝐹 1(;𝛼; 𝑧) ,
∞∑︁
𝑛=0

𝑧𝑛

(𝛼)𝑛𝑛!
, (A.3)

where we have used the Pochhammer symbol

(𝑎)𝑛 =

⎧⎪⎨⎪⎩1 if 𝑛 = 0

𝑎(𝑎+ 1)(𝑛+ 2) . . . (𝑎+ 𝑛− 1) if 𝑛 ≥ 1.

We have

• The minimum 𝑒−2𝑡
0𝐹 1(;

𝑑+1
2
; 𝑡2) is achieved iff 𝜇 = 𝜎𝑑 (on Borel subsets of 𝒮𝑑).

Furthermore, this value strictly decreases as 𝑑 increases, converging to 𝑒−2𝑡 in

the limit of 𝑑→ ∞.

• The maximum is achieved iff 𝜇 is a Dirac delta distribution, i.e., 𝜇 = 𝛿𝑢 (on

Borel subsets of 𝒮𝑑), for some 𝑢 ∈ 𝒮𝑑.

Proof of Proposition A.1.5.

• Minimum.

We know from Proposition 2.4.2 that 𝜎𝑑 uniquely achieves the minimum, given

by the following integral ratio

𝐼𝐺𝑡 [𝜎𝑑] =

∫︀ 𝜋
0
𝑒−𝑡(2 sin

𝜃
2
)2 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋

0
sin𝑑−1 𝜃 d𝜃

=

∫︀ 𝜋
0
𝑒−2𝑡(1−cos 𝜃) sin𝑑−1 𝜃 d𝜃∫︀ 𝜋

0
sin𝑑−1 𝜃 d𝜃

= 𝑒−2𝑡

∫︀ 𝜋
0
𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋
0
sin𝑑−1 𝜃 d𝜃

.

The denominator, with some trigonometric identities, can be more straightfor-
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wardly evaluated as ∫︁ 𝜋

0

sin𝑑−1 𝜃 d𝜃 =
√
𝜋

Γ(𝑑
2
)

Γ(𝑑+1
2
)
.

The numerator is

∫︁ 𝜋

0

𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃 = −
∫︁ 𝜋

0

𝑒2𝑡 cos 𝜃 sin𝑑−2 𝜃 cos′ 𝜃 d𝜃

=

∫︁ 1

−1

𝑒2𝑡𝑠(1− 𝑠2)𝑑/2−1 d𝑠

=
Γ(𝑑−1

2
+ 1

2
)
√
𝜋

Γ(𝑑−1
2

+ 1) 0𝐹 1(;
𝑑− 1

2
+ 1;−1

4
(−2𝑖𝑡)2)

=
Γ(𝑑

2
)
√
𝜋

Γ(𝑑+1
2
) 0𝐹 1(;

𝑑+ 1

2
; 𝑡2),

where we have used the following identity based on the Poisson formula for

Bessel functions and the relationship between 0𝐹 1 and Bessel functions:

∫︁ 1

−1

𝑒𝑖𝑧𝑠(1− 𝑠2)𝜈−
1
2 d𝑠 =

Γ(𝜈 + 1
2
)
√
𝜋

( 𝑧
2
)𝜈

𝐽𝜈(𝑧) =
Γ(𝜈 + 1

2
)
√
𝜋

Γ(𝜈 + 1) 0𝐹 1(; 𝜈 + 1;−1

4
𝑧2).

Putting both together, we have

𝐼𝐺𝑡 [𝜎𝑑] = 𝑒−2𝑡

∫︀ 𝜋
0
𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋
0
sin𝑑−1 𝜃 d𝜃

= 𝑒−2𝑡

Γ( 𝑑
2
)
√
𝜋

Γ( 𝑑+1
2

) 0𝐹 1(;
𝑑+1
2
; 𝑡2)

√
𝜋

Γ( 𝑑
2
)

Γ( 𝑑+1
2

)

= 𝑒−2𝑡
0𝐹 1(;

𝑑+ 1

2
; 𝑡2)

= 𝑒−2𝑡

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2
)𝑛𝑛!

,

where we have used the definition of 0𝐹 1 in Equation (A.3) to expand the

formula.

Notice that each summand strictly decreases as 𝑑→ ∞. So must the total sum.
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For the asymptotic behavior at 𝑑→ ∞, it only remains to show that

lim
𝑑→∞

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2
)𝑛𝑛!

= 1. (A.4)

For the purpose of applying the Dominated Convergence Theorem (DCT) (on

the counting measure). We consider the following summable series

∞∑︁
𝑛=0

𝑡2𝑛

𝑛!
= 𝑒𝑡

2

,

with each term bounding the corresponding one in Equation (A.4):

𝑡2𝑛

𝑛!
≥ 𝑡2𝑛

(𝑑+1
2
)𝑛𝑛!

, ∀𝑛 ≥ 0, 𝑑 > 0.

Thus,

lim
𝑑→∞

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2
)𝑛𝑛!

=
∞∑︁
𝑛=0

lim
𝑑→∞

𝑡2𝑛

(𝑑+1
2
)𝑛𝑛!

= 1 + 0 + 0 + · · · = 1.

Hence, the asymptotic lower range is 𝑒−2𝑡.

• Maximum.

Obviously, Dirac delta distributions 𝛿𝑢, 𝑢 ∈ 𝒮𝑑 would achieve a maximum of 1.

We will now show that all Borel probability measures 𝜇 s.t. 𝐼𝐺𝑡 [𝜇] = 1 are delta

distributions.

Suppose that such a 𝜇 is not a Dirac delta distribution. Then, we can take

distinct 𝑥, 𝑦 ∈ supp(𝜇) ⊆ 𝒮𝑑, and open neighborhoods around 𝑥 and 𝑣, 𝑁𝑥, 𝑁𝑦 ∈

𝒮𝑑 such that they are small enough and disjoint:

𝑁𝑥 , {𝑢 ∈ 𝒮𝑑 : ‖𝑢− 𝑥‖2 <
1

3
‖𝑥− 𝑦‖2}

𝑁𝑦 , {𝑢 ∈ 𝒮𝑑 : ‖𝑢− 𝑦‖2 <
1

3
‖𝑥− 𝑦‖2}.
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Then,

𝐼𝐺𝑡 [𝜇] =

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

=

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒−𝑡‖𝑢−𝑣‖

2
2 d𝜇(𝑣) d𝜇(𝑢)

≤ (1− 2𝜇(𝑁𝑥)𝜇(𝑁𝑦))𝑒
−𝑡·0 + 2

∫︁
𝑁𝑥

∫︁
𝑁𝑦

𝑒−𝑡‖𝑢−𝑣‖
2
2 d𝜇(𝑣) d𝜇(𝑢)

< 1− 2𝜇(𝑁𝑥)𝜇(𝑁𝑦) + 2𝜇(𝑁𝑥)𝜇(𝑁𝑦)𝑒
−𝑡(‖𝑥−𝑦‖2/3)2

= 1− 2𝜇(𝑁𝑥)𝜇(𝑁𝑦)(1− 𝑒−
𝑡
9
‖𝑥−𝑦‖22)

< 1.

Hence, only Dirac delta distributions attain the maximum.

Corollary A.1.6 (Range of ℒuniform). For encoder 𝑓 : R𝑛 → 𝒮𝑚−1, ℒuniform(𝑓 ; 𝑡) ∈

[−2𝑡 + log 0𝐹 1(;
𝑚
2
; 𝑡2), 0], where the lower bound −2𝑡 + log 0𝐹 1(;

𝑚
2
; 𝑡2) is achieved

only by perfectly uniform encoders 𝑓 , and the upper bound 0 is achieved only by

degenerate encoders that output a fixed feature vector almost surely.

Furthermore, the lower bound strictly decreases as the output dimension 𝑚 in-

creases, attaining the following asymptotic value

lim
𝑚→∞

−2𝑡+ log 0𝐹 1(;
𝑚

2
; 𝑡2) = −2𝑡. (A.5)

Intuition for the optimal ℒuniform value in high dimensions. If we ignore the

log 0𝐹 1(;
𝑚
2
; 𝑡2) term, informally, the optimal value of −2𝑡 roughly says that any pair

of feature vectors on 𝒮𝑑 has distance about
√
2, i.e., are nearly orthogonal to each

other. Indeed, vectors of high dimensions are usually nearly orthogonal, which is also

consistent with the asymptotic result in Equation (A.5).

Figures A-1 and A-2 visualize how 0𝐹 1 and the optimal ℒuniform (given by perfectly

uniform encoders) evolve.
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Figure A-1: Asymptotic behavior of
0𝐹 1(;𝛼; 𝑧). For 𝑧 > 0, as 𝛼 grows larger,
the function converges to 1.
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Figure A-2: Asymptotic behavior of opti-
mal ℒuniform(𝑓, 𝑡), attained by a perfectly uni-
form encoder 𝑓*. As the feature dimension
𝑚 grows larger, the value converges to −2𝑡.

Lower bound of ℒuniform estimates. In practice, when ℒuniform calculated using

expectation over (a batch of) empirical samples {𝑥𝑖}𝐵𝑖=1, 𝐵 > 1, the range in Corol-

lary A.1.6 is indeed valid, since it bounds over all distributions:

ℒ̂(1)
uniform , log

1

𝐵2

𝐵∑︁
𝑖=1

𝐵∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2

> −2𝑡+ log 0𝐹 1(;
𝑚

2
; 𝑡2). (A.6)

However, often ℒuniform is empirically estimated without considering distances between

a vector and itself (e.g., in Figure 2-6 and in our experiment settings as described in

Appendix A.2):

ℒ̂(2)
uniform , log

1

𝐵(𝐵 − 1)

𝐵∑︁
𝑖=1

∑︁
𝑗∈{1,...,𝐵}∖{𝑖}

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2

. (A.7)

While both quantities converge to the correct value in the limit, the lower bound is

not always true for this one, because it is not the expected pairwise Gaussian kernel

based on some distribution. Note the following relation:

ℒ̂(2)
uniform = log

(︃
𝐵 · exp(ℒ̂(1)

uniform)− 1

𝐵 − 1

)︃
.

We can derive a valid lower bound using Equation (A.6): for 0𝐹 1(;
𝑚
2
; 𝑡2) > 𝑒2𝑡

𝐵
,

ℒ̂(2)
uniform > log

(︂
𝐵 · exp(−2𝑡+ log 0𝐹 1(;

𝑚
2
; 𝑡2))− 1

𝐵 − 1

)︂
= log

(︂
𝐵𝑒−2𝑡

0𝐹 1(;
𝑚
2
; 𝑡2)− 1

𝐵 − 1

)︂
.
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Since this approaches fails for cases that 0𝐹 1(;
𝑚
2
; 𝑡2) ≤ 𝑒2𝑡

𝐵
, we can combine it with

the naive lower bound −4𝑡, and have

ℒ̂(2)
uniform >

⎧⎪⎨⎪⎩max(−4𝑡, log
(︁
𝐵𝑒−2𝑡

0𝐹 1(;
𝑚
2
;𝑡2)−1

𝐵−1

)︁
) if 0𝐹 1(;

𝑚
2
; 𝑡2) > 𝑒2𝑡

𝐵

−4𝑡 otherwise.

Non-negative versions of ℒuniform for practical uses. By definition, ℒuniform

always non-positive. As shown above, different ℒuniform empirical estimates may admit

different lower bounds. However, in our experience, for reasonably large batch sizes,

adding an offset of 2𝑡 often ensures a non-negative loss that is near zero at optimum.

When output dimensionality 𝑚 is low, it might be useful to add an additional offset of

− log 0𝐹 1(;
𝑚
2
; 𝑡2), which can be computed with the help of the SciPy package function

scipy.special.hyp0f1(m/2, t**2) (Virtanen et al., 2020).

A.1.2 Proofs and Additional Results for Section 2.4.2

The following lemma directly follows Theorem 3.3 and Remarks 3.4 (b)(i) of Serfozo

(1982). We refer readers to Serfozo (1982) for its proof.

Lemma A.1.7. Let 𝐴 be a compact second countable Hausdorff space. Suppose

1. {𝜇𝑛}∞𝑛=1 is a sequence of finite and positive Borel measures supported on 𝐴 that

converges weak* to some finite and positive Borel measure 𝜇 (which is same as

vague convergence since 𝐴 is compact);

2. {𝑓𝑛}∞𝑛=1 is a sequence of Borel measurable functions that converges continuously

to a Borel measurable 𝑓 ;

3. {𝑓𝑛}𝑛 are uniformly bounded over 𝐴.

Then, we have the following convergence:

lim
𝑛→∞

∫︁
𝑥∈𝐴

𝑓𝑛(𝑥) d𝜇𝑛(𝑥) =

∫︁
𝑥∈𝐴

𝑓(𝑥) d𝜇(𝑥).

We now recall Theorem 2.4.7.
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Theorem 2.4.7 (Asymptotics of ℒcontrastive). For fixed 𝜏 > 0, as the number of

negative samples 𝑀 → ∞, the (normalized) contrastive loss converges to

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀)− log𝑀

= lim
𝑀→∞

E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
− log

𝑒𝑓(𝑥)
T𝑓(𝑦)/𝜏

𝑒𝑓(𝑥)T𝑓(𝑦)/𝜏 +
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖 )T𝑓(𝑦)/𝜏

]︃
− log𝑀

= −1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
. (2.2)

We have the following results:

1. The first term is minimized iff 𝑓 is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

3. For the convergence in Equation (2.2), the absolute deviation from the limit

(i.e., the error term) decays in 𝒪(𝑀−1/2).

Proof of Theorem 2.4.7. We first show the convergence stated in Equation (2.2) along

with its speed (result 3), and then the relations between the two limiting terms and

the alignment and uniformity properties (results 1 and 2).

• Proof of the convergence in Equation (2.2) and the 𝒪(𝑀−1/2) decay

rate of its error term (result 3).

Note that for any 𝑥, 𝑦 ∈ R𝑛 and {𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data, we have, almost surely,

lim
𝑀→∞

log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃
= log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
,

(A.8)

by the strong law of large numbers (SLLN) and the Continuous Mapping The-

orem.
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Then, we can derive

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀)− log𝑀

= E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ lim

𝑀→∞
E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃]︃

= E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ E

[︃
lim
𝑀→∞

log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃]︃

= −1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
,

where we justify the switching of expectation and limit by the convergence

stated in Equation (A.8), the boundedness of 𝑒𝑢T𝑣/𝜏 (where 𝑢, 𝑣 ∈ 𝒮𝑑, 𝜏 > 0),

and the Dominated Convergence Theorem (DCT).

For convergence speed, we have

⃒⃒⃒(︁
lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀)− log𝑀
)︁
− (ℒcontrastive(𝑓 ; 𝜏,𝑀)− log𝑀)

⃒⃒⃒

=

⃒⃒⃒⃒
⃒⃒⃒⃒ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃]︃⃒⃒⃒⃒⃒⃒⃒⃒
≤ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃⃒⃒⃒⃒
⃒
]︃

≤ 𝑒1/𝜏 E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒ E
𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
−

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

)︃⃒⃒⃒⃒
⃒
]︃

≤ 1

𝑀
𝑒2/𝜏 + 𝑒1/𝜏 E

𝑥,{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒ E
𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− 1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏

⃒⃒⃒⃒
⃒
]︃

=
1

𝑀
𝑒2/𝜏 +𝒪(𝑀−1/2), (A.9)
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where the first inequality follows the Intermediate Value Theorem and the 𝑒1/𝜏

upper bound on the absolute derivative of log between the two points, and the

last equality follows the Berry-Esseen Theorem given the bounded support of

𝑒𝑓(𝑥
−
𝑖 )T𝑓(𝑥)/𝜏 as following: for i.i.d. random variables 𝑌𝑖 with bounded support

⊂ [−𝑎, 𝑎], zero mean and 𝜎2
𝑌 ≤ 𝑎2 variance, we have

E

[︃⃒⃒⃒⃒
⃒ 1𝑀

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒
]︃
=

𝜎𝑌√
𝑀

E

[︃⃒⃒⃒⃒
⃒ 1√
𝑀𝜎𝑌

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒
]︃

=
𝜎𝑌√
𝑀

∫︁ 𝑎
√
𝑀

𝜎𝑌

0

P

[︃⃒⃒⃒⃒
⃒ 1√
𝑀𝜎𝑌

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒ > 𝑥

]︃
d𝑥

≤ 𝜎𝑌√
𝑀

∫︁ 𝑎
√
𝑀

𝜎𝑌

0

P [|𝒩 (0, 1)| > 𝑥] +
𝐶𝑎√
𝑀

d𝑥 (Berry-Esseen)

≤ 𝜎𝑌√
𝑀

(︂
𝑎𝐶𝑎
𝜎𝑌

+

∫︁ ∞

0

P [|𝒩 (0, 1)| > 𝑥] d𝑥

)︂
=

𝜎𝑌√
𝑀

(︂
𝑎𝐶𝑎
𝜎𝑌

+ E [|𝒩 (0, 1)|]
)︂

≤ 𝐶𝑎√
𝑀

+
𝑎√
𝑀

E [|𝒩 (0, 1)|]

= 𝒪(𝑀−1/2),

where the constant 𝐶𝑎 only depends on 𝑎 (which controls both the second and

the third moment).

• Proof of result 1: The first term is minimized iff 𝑓 is perfectly aligned.

Note that for 𝑢, 𝑣 ∈ 𝒮𝑑,

‖𝑢− 𝑣‖22 = 2− 2 · 𝑢𝑇𝑣.

Then the result follows directly the definition of perfect alignment, and the

existence of perfectly aligned encoders (e.g., an encoder that maps every input

to the same output vector).

• Proof of result 2: If perfectly uniform encoders exist, they form the

exact minimizers of the second term.
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For simplicity, we define the following notation:

Definition A.1.8. ∀𝜇 ∈ ℳ(𝒮𝑑), 𝑢 ∈ 𝒮𝑑, we define the continuous and Borel

measurable function

𝑈𝜇(𝑢) ,
∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣). (A.10)

with its range bounded in [𝑒−1/𝜏 , 𝑒1/𝜏 ].

Then the second term can be equivalently written as

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂

= E
𝑥∼𝑝data

[log𝑈𝑝data∘𝑓−1(𝑓(𝑥))] ,

where 𝑝data ∘ 𝑓−1 ∈ ℳ(𝒮𝑑) is the probability measure of features, i.e., the

pushforward measure of 𝑝data via 𝑓 .

We now consider the following relaxed problem, where the minimization is taken

over ℳ(𝒮𝑑), all possible Borel probability measures on the hypersphere 𝒮𝑑:

min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢). (A.11)

Our strategy is to show that the unique minimizer of Equation (A.11) is 𝜎𝑑,

from which the result 2 directly follows. The rest of the proof is structured in

three parts.

1. We show that minimizers of Equation (A.11) exist, i.e., the above

infimum is attained for some 𝜇 ∈ ℳ(𝒮𝑑).

Let {𝜇𝑚}∞𝑚=1 be a sequence in ℳ(𝒮𝑑) such that the infimum of Equa-

tion (A.11) is reached in the limit:

lim
𝑚→∞

∫︁
𝒮𝑑

log𝑈𝜇𝑚(𝑢) d𝜇𝑚(𝑢) = inf
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢).

From the Helly’s Selection Theorem, let 𝜇* denote some weak* cluster point

of this sequence. Then 𝜇𝑚 converges weak* to 𝜇* along a subsequence
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𝑚 ∈ 𝒩 ∈ N. For simplicity and with a slight abuse of notation, we denote

this convergent (sub)sequence of measures by {𝜇𝑛}∞𝑛=1.

We want to show that 𝜇* attains the limit (and thus the infimum), i.e.,

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*(𝑢) = lim

𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇𝑛(𝑢) d𝜇𝑛(𝑢). (A.12)

In view of Lemma A.1.7, since 𝒮𝑑 is a compact second countable Hausdorff

space and {log𝑈𝜇𝑛}𝑛 is uniformly bounded over 𝒮𝑑, it remains to prove

that {log𝑈𝜇𝑛}𝑛 is continuously convergent to log𝑈𝜇* .

Consider any convergent sequence of points {𝑥𝑛}∞𝑛=1 ∈ R𝑑+1 s.t. 𝑥𝑛 → 𝑥

where 𝑥 ∈ 𝒮𝑑.

Let 𝛿𝑛 = 𝑥𝑛 − 𝑥. By simply expanding 𝑈𝜇𝑛 and 𝜇𝜇* , we have

𝑒−‖𝛿𝑛‖/𝜏𝑈𝜇𝑛(𝑥) ≤ 𝑈𝜇𝑛(𝑥𝑛) ≤ 𝑒‖𝛿𝑛‖/𝜏𝑈𝜇𝑛(𝑥).

Since both the upper and the lower bound converge to 𝑈𝜇*(𝑥) (by the weak
* convergence of {𝜇𝑛}𝑛 to 𝜇*), 𝑈𝜇𝑛(𝑥𝑛) must as well. We have proved the

continuous convergence of {log𝑈𝜇𝑛}𝑛 to log𝑈𝜇* .

Therefore, the limit in Equation (A.12) holds. The infimum is thus attained

at 𝜇*:

lim
𝑛→∞

∫︁
𝑢

log𝑈𝜇𝑛(𝑢) d𝜇𝑛 =

∫︁
𝑢

log𝑈𝜇*(𝑢) d𝜇
*.

2. We show that 𝑈𝜇* is constant 𝜇*-almost surely for any minimizer

𝜇* of Equation (A.11).

Let 𝜇* be any solution of Equation (A.11):

𝜇* ∈ argmin
𝜇∈ℳ(𝒮𝑑)

∫︁
𝑢

log𝑈𝜇(𝑢) d𝜇.

Consider the Borel sets where 𝜇* has positive measure: 𝒯 , {𝑇 ∈ ℬ(𝒮𝑑) : 𝜇*(𝑇 ) >

0}. For any 𝑇 ∈ 𝒯 , let 𝜇*
𝑇 denote the conditional distribution of 𝜇* on 𝑇 ,
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i.e., ∀𝐴 ∈ ℬ(𝒮𝑑),

𝜇*
𝑇 (𝐴) =

𝜇*(𝐴 ∩ 𝑇 )
𝜇*(𝑇 )

.

Note that for any such 𝑇 ∈ 𝒯 , the mixture (1 − 𝛼)𝜇* + 𝛼𝜇*
𝑇 is a valid

probability distribution (i.e., in ℳ(𝒮𝑑)) for 𝛼 ∈ (−𝜇*(𝑇 ), 1), an open

interval containing 0.

By the first variation, we must have

0 =
𝜕

𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d((1− 𝛼)𝜇* + 𝛼𝜇*
𝑇 )(𝑢)

⃒⃒⃒⃒
𝛼=0

=
𝜕

𝜕𝛼
(1− 𝛼)

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*(𝑢)

⃒⃒⃒⃒
𝛼=0

+
𝜕

𝜕𝛼
𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

= −
∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*(𝑢)

⃒⃒⃒⃒
𝛼=0

+
𝜕

𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*(𝑢)

⃒⃒⃒⃒
𝛼=0

+

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

+ 0 · 𝜕
𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇
*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

= −
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*(𝑢) +

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢)− 𝑈𝜇*(𝑢)

𝑈𝜇*(𝑢)
d𝜇*(𝑢)

+

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*
𝑇 (𝑢) + 0 ·

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢)− 𝑈𝜇*(𝑢)

𝑈𝜇*(𝑢)
d𝜇*

𝑇 (𝑢)

=

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢)

𝑈𝜇*(𝑢)
d𝜇*(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d(𝜇
*
𝑇 − 𝜇*)(𝑢)− 1, (A.13)

where the Leibniz rule along with the boundedness of 𝑈𝜇* and 𝑈𝜇*𝑇𝑛 to-

gether justify the exchanges of integration and differentiation.

Let {𝑇𝑛}∞𝑛=1 be a sequence of sets in 𝒯 such that

lim
𝑛→∞

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*
𝑇𝑛(𝑢) = sup

𝑇∈𝒯

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*
𝑇 (𝑢) , 𝑈*,

where the supremum must exist since 𝑈𝜇* is bounded above.

Because 𝑈𝜇* is a continuous and Borel measurable function, we have {𝑢 : 𝑈𝜇*(𝑢) >
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𝑈*} ∈ ℬ(𝒮𝑑) and thus

𝜇*({𝑢 : 𝑈𝜇*(𝑢) > 𝑈*}) = 0,

𝜇*
𝑇𝑛({𝑢 : 𝑈𝜇*(𝑢) > 𝑈*}) = 0, ∀𝑛 = 1, 2, . . . ,

otherwise {𝑢 : 𝑈𝜇*(𝑢) > 𝑈*} ∈ 𝒯 , contradicting the definition of 𝑈* as the

supremum.

Asymptotically, 𝑈𝜇* is constant 𝜇*
𝑇𝑛

-almost surely:

∫︁
𝒮𝑑

⃒⃒⃒⃒
𝑈𝜇*(𝑢)−

∫︁
𝒮𝑑
𝑈𝜇*(𝑢

′) d𝜇*
𝑇𝑛(𝑢

′)

⃒⃒⃒⃒
d𝜇*

𝑇𝑛(𝑢)

= 2

∫︁
𝒮𝑑

max

(︂
0, 𝑈𝜇*(𝑢)−

∫︁
𝒮𝑑
𝑈𝜇*(𝑢

′) d𝜇*
𝑇𝑛(𝑢

′)

)︂
d𝜇*

𝑇𝑛(𝑢)

≤ 2(𝑈* −
∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*
𝑇𝑛(𝑢))

→ 0, as 𝑛→ ∞,

where the inequality follows the boundedness of 𝑈𝜇* and that 𝜇*
𝑇𝑛
({𝑢 : 𝑈𝜇*(𝑢) >

𝑈*}) = 0.

Therefore, given the continuity of log and the boundedness of 𝑈𝜇* , we have

lim
𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*
𝑇𝑛 = log𝑈*.

Equation (A.13) gives that ∀𝑛 = 1, 2, . . . ,

1 =

∫︁
𝒮𝑑

𝑈𝜇*𝑇𝑛 (𝑢)

𝑈𝜇*(𝑢)
d𝜇* +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d(𝜇
*
𝑇𝑛 − 𝜇*)

≥ 1

𝑈*

∫︁
𝒮𝑑
𝑈𝜇*𝑇𝑛 (𝑢) d𝜇

*(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*
𝑇𝑛 −

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*

=
1

𝑈*

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*
𝑇𝑛(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*
𝑇𝑛 −

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*,

where the inequality follows the boundedness of
𝑈𝜇*

𝑇𝑛

𝑈𝜇*
and that 𝜇*({𝑢 : 𝑈𝜇*(𝑢) >

𝑈*}) = 0.
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Taking the limit of 𝑛→ ∞ on both sides, we have

1 = lim
𝑛→∞

1 ≥ 1

𝑈* lim
𝑛→∞

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*
𝑇𝑛(𝑢) + lim

𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*
𝑇𝑛(𝑢)

−
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*(𝑢)

= 1 + log𝑈* −
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*(𝑢)

≥ 1 + log𝑈* − log

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*(𝑢)

≥ 1,

where the last inequality holds because the supremum taken over 𝒯 ⊃

{𝒮𝑑}.

Since 1 = 1, all inequalities must be equalities. In particular,

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇
*(𝑢) = log

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇

*(𝑢).

That is, for any solution 𝜇* of Equation (A.11), 𝑈𝜇* must be constant

𝜇*-almost surely.

3. We show that 𝜎𝑑 is the unique minimizer of the relaxed problem

in Equation (A.11).

Let 𝑆 ⊂ ℳ(𝒮𝑑) be the set of measures where the above property holds:

𝑆 ,
{︀
𝜇 ∈ ℳ(𝒮𝑑) : 𝑈𝜇 is constant 𝜇-almost surely

}︀
.
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The problem in Equation (A.11) is thus equivalent to minimizing over 𝑆:

argmin
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢) = argmin
𝜇∈𝑆

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢)

= argmin
𝜇∈𝑆

log

∫︁
𝒮𝑑
𝑈𝜇(𝑢) d𝜇(𝑢)

= argmin
𝜇∈𝑆

log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢)

= argmin
𝜇∈𝑆

(︂
1

𝜏
+ log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒−

1
2𝜏

‖𝑢−𝑣‖2 d𝜇(𝑣) d𝜇(𝑢)

)︂
= argmin

𝜇∈𝑆

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢).

By Proposition 2.4.2 and 𝜏 > 0, we know that the uniform distribution 𝜎𝑑

is the unique solution to

argmin
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢). (A.14)

Since 𝜎𝑑 ∈ 𝑆, it must also be the unique solution to Equation (A.11).

Finally, if perfectly uniform encoders exist, 𝜎𝑑 is realizable, and they are the ex-

act encoders that realize it. Hence, in such cases, they are the exact minimizers

of

min
𝑓

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
.

Relation between Theorem 2.4.7, ℒalign and ℒuniform. The first term of Equa-

tion (2.2) is equivalent with ℒalign when 𝛼 = 2, up to a constant and a scaling. In

the above proof, we showed that the second term favors uniformity, via the feature

distribution that minimizes the pairwise Gaussian kernel (see Equation (A.14)):

argmin
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢), (A.15)
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which can be alternatively viewed as the relaxed problem of optimizing for the

uniformity loss ℒuniform:

argmin
𝑓

ℒuniform(𝑓 ;
1

2𝜏
) = argmin

𝑓
E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝐺 1

2𝜏
(𝑓(𝑥), 𝑓(𝑦))

]︁
. (A.16)

The relaxation comes from the observation that Equation (A.15) minimizes over all

feature distributions on 𝒮𝑑, while Equation (A.16) only considers the realizable ones.

Relation between Equation (A.11) and minimizing average pairwise Gaus-

sian potential (i.e., minimizing ℒuniform). In view of the Proposition 2.4.2 and

the proof of Theorem 2.4.7, we know that the uniform distribution 𝜎𝑑 is the unique

minimizer of both of the following problems:

{𝜎𝑑} = min
𝜇∈ℳ(𝒮𝑑)

log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢),

{𝜎𝑑} = min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢).

So pushing the log inside the outer integral doesn’t change the solution. However, if

we push the log all the way inside the inner integral, the problem becomes equivalent

with minimizing the norm of the mean, i.e.,

min
𝜇∈ℳ(𝒮𝑑)

E𝑈∼𝜇 [𝑈 ]
T E𝑈∼𝜇 [𝑈 ] ,

which is minimized for any distribution with mean being the all-zeros vector 0,

e.g., 1
2
𝛿𝑢 +

1
2
𝛿−𝑢 for any 𝑢 ∈ 𝒮𝑑 (where 𝛿𝑢 is the Dirac delta distribution at 𝑢 s.t.

𝛿𝑢(𝑆) = 1𝑆(𝑢), ∀𝑆 ∈ ℬ(𝒮𝑑)). Therefore, the location of the log is important.

Theorem A.1.9 (Single negative sample). If perfectly aligned and uniform en-

coders exist, they form the exact minimizers of the contrastive loss ℒcontrastive(𝑓 ; 𝜏,𝑀)

for fixed 𝜏 > 0 and 𝑀 = 1.
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Proof of Theorem A.1.9. Since 𝑀 = 1, we have

ℒcontrastive(𝑓 ; 𝜏, 1) = E
(𝑥,𝑦)∼𝑝pos
𝑥−∼𝑝data

[︂
−1

𝜏
𝑓(𝑥)T𝑓(𝑦) + log

(︁
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 + 𝑒𝑓(𝑥
−)T𝑓(𝑥)/𝜏

)︁]︂

≥ E
𝑥∼𝑝data
𝑥−∼𝑝data

[︂
−1

𝜏
+ log

(︁
𝑒1/𝜏 + 𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
)︁]︂

(A.17)

≥ −1

𝜏
+ min

𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒𝑢

T𝑣/𝜏
)︁
d𝜇(𝑢) d𝜇(𝑣) (A.18)

= −1

𝜏
+ min

𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒(2−‖𝑢−𝑣‖22)/(2𝜏)

)︁
d𝜇(𝑢) d𝜇(𝑣).

By the definition of perfect alignment, the equality in Equation (A.17) is satisfied iff

𝑓 is perfectly aligned.

Consider the function 𝑓 : (0, 4] → R+ defined as

𝑓(𝑡) = log(𝑒
1
𝜏 + 𝑒

2−𝑡
2𝜏 ).

It has the following properties:

• −𝑓 ′(𝑡) = 1
2𝜏

𝑒−
𝑡
2𝜏

1+𝑒−
𝑡
2𝜏

= 1
2𝜏
(1 − (1 + 𝑒−

𝑡
2𝜏 )−1) is strictly completely monotone on

(0,+∞):

∀𝑡 ∈ (0,+∞),

1

2𝜏
(1− (1 + 𝑒−

𝑡
2𝜏 )−1) > 0

(−1)𝑛
d𝑛

d𝑡𝑛
1

2𝜏
(1− (1 + 𝑒−

𝑡
2𝜏 )−1) =

𝑛!

(2𝜏)𝑛+1
(1 + 𝑒−

𝑡
2𝜏 )−(𝑛+1) > 0, 𝑛 = 1, 2, . . . .

• 𝑓 is bounded on (0, 4].

In view of Lemma A.1.4, we have that the equality in Equation (A.18) is satisfied iff

the feature distribution induced by 𝑓 (i.e., the pushforward measure 𝑝data ∘ 𝑓−1) is

𝜎𝑑, that is, in other words, 𝑓 is perfectly uniform.
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Therefore,

ℒcontrastive(𝑓 ; 𝜏, 1) ≥ −1

𝜏
+

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒𝑢

T𝑣/𝜏
)︁
d𝜎𝑑(𝑢) d𝜎𝑑(𝑣)

= constant independent of 𝑓,

where equality is satisfied iff 𝑓 is perfectly aligned and uniform. This concludes the

proof.

Difference between conditions of Theorems 2.4.7 and A.1.9. We remark

that the statement in Theorem A.1.9 is weaker than the previous Theorem 2.4.7.

Theorem A.1.9 is conditioned on the existence perfectly aligned and uniform encoders.

It only shows that ℒcontrastive(𝑓 ; 𝜏,𝑀 = 1) favors alignment under the condition that

perfect uniformity is realizable, and vice versa. In Theorem 2.4.7, ℒcontrastive decomposes

into two terms, each favoring alignment and uniformity. Therefore, the decomposition

in Theorem 2.4.7 is exempof t from this constraint.

A.2 Experiment Details

All experiments are performed on 1-4 NVIDIA Titan Xp, Titan X PASCAL, Titan

RTX, or 2080 Ti GPUs.

A.2.1 CIFAR-10, STL-10 and NYU-Depth-V2 Experiments

For CIFAR-10, STL-10 and NYU-Depth-V2 experiments, we use the following

settings, unless otherwise stated in Tables A.3 and A.4 below:

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, and random

grayscale conversion. This follows prior empirical work in contrastive represen-

tation learning (Wu et al., 2018; Tian et al., 2020b; Hjelm et al., 2018; Bachman

et al., 2019).
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• Neural network architectures follow the corresponding experiments on these

datasets in Tian et al. (2020b). For NYU-Depth-V2 evaluation, the architecture

of the depth prediction CNN is described in Table A.1.

• We use minibatch stochastic gradient descent (SGD) with 0.9 momentum and

0.0001 weight decay.

• We use linearly scaled learning rate (0.12 per 256 batch size) (Goyal et al., 2017).

– CIFAR-10 and STL-10: Optimization is done over 200 epochs, with

learning rate decayed by a factor of 0.1 at epochs 155, 170, and 185.

– NYU-Depth-V2: Optimization is done over 400 epochs, with learning

rate decayed by a factor of 0.1 at epochs 310, 340, and 370.

• Encoders are optimized over the training split. For evaluation, we freeze the

encoder, and train classifiers / depth predictors on the training set samples, and

test on the validation split.

– CIFAR-10 and STL-10: We use standard train-val split. Linear classifiers

are trained with Adam (Kingma and Ba, 2014) over 100 epochs, with

𝛽1 = 0.5, 𝛽2 = 0.999, 𝜖 = 10−8, 128 batch size, and an initial learning rate

of 0.001, decayed by a factor of 0.2 at epochs 60 and 80.

– NYU-Depth-V2: We use the train-val split on the 1449 labeled images

from Nathan Silberman and Fergus (2012). Depth predictors are trained

with Adam (Kingma and Ba, 2014) over 120 epochs, with 𝛽1 = 0.5, 𝛽2 =

0.999, 𝜖 = 10−8, 128 batch size, and an initial learning rate of 0.003, decayed

by a factor of 0.2 at epochs 70, 90, 100, and 110.

At each SGD iteration, a minibatch of 𝐾 positive pairs is sampled {(𝑥𝑖, 𝑦𝑖)}𝐾𝑖=1,

and the three losses for this minibatch are calculated as following:

• ℒcontrastive: For each 𝑥𝑖, the sample contrastive loss is taken with the positive being

𝑦𝑖, and the negatives being {𝑦𝑗}𝑗 ̸=𝑖. For each 𝑦𝑖, the sample loss is computed
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Operator
Input

Spatial Shape
Input

#Channel
Kernel
Size Stride Padding

Output
Spatial Shape

Output
#Channel

Input [ℎin, 𝑤in] 𝑐in — — — [ℎin, 𝑤in] 𝑐in

Conv. Transpose + BN + ReLU [ℎin, 𝑤in] 𝑐in 3 2 1 [2ℎin, 2𝑤in] ⌊𝑐in/2⌋
Conv. Transpose + BN + ReLU [2ℎin, 2𝑤in] ⌊𝑐in/2⌋ 3 2 1 [4ℎin, 4𝑤in] ⌊𝑐in/4⌋

...
...

...
...

...
...

...
...

Conv. Transpose + BN + ReLU [ℎout/2, 𝑤out/2]
⌊︀
𝑐in/2

𝑛−1
⌋︀

3 2 1 [ℎout, 𝑤out] ⌊𝑐in/2𝑛⌋
Conv. [ℎout, 𝑤out] ⌊𝑐in/2𝑛⌋ 3 1 1 [ℎout, 𝑤out] 1

Table A.1: NYU-Depth-V2 CNN depth predictor architecture. Each Conv.Trans-
pose+BN+ReLU block increases the spatial shape by a factor of 2, where BN denotes
Batch Normalization (Ioffe and Szegedy, 2015). A sequence of such blocks computes a tensor
of the correct spatial shape, from an input containing intermediate activations of a CNN
encoder (which downsamples the input RGB image by a power of 2). A final convolution at
the end computes the single-channel depth prediction.

similarly. The minibatch loss is calculated by aggregating these 2𝐾 terms:

1

2𝐾

𝐾∑︁
𝑖=1

log
𝑒𝑓(𝑥𝑖)

T𝑓(𝑦𝑖)/𝜏∑︀𝐾
𝑗=1 𝑒

𝑓(𝑥𝑖)T𝑓(𝑦𝑗)/𝜏
+

1

2𝐾

𝐾∑︁
𝑖=1

log
𝑒𝑓(𝑥𝑖)

T𝑓(𝑦𝑖)/𝜏∑︀𝐾
𝑗=1 𝑒

𝑓(𝑥𝑗)T𝑓(𝑦𝑖)/𝜏
.

This calculation follows empirical practices and is similar to Oord et al. (2018);

Hénaff et al. (2019), and end-to-end in He et al. (2019).

• ℒalign: The minibatch alignment loss is straightforwardly computed as

1

𝐾

𝐾∑︁
𝑖=1

‖𝑓(𝑥𝑖)− 𝑓(𝑦𝑖)‖𝛼2 .

• ℒuniform: The minibatch uniform loss is calculated by considering each pair of

{𝑥𝑖}𝑖 and {𝑦𝑖}𝑖:

1

2
log

(︂
2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2

)︂
+
1

2
log

(︂
2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑦𝑖)−𝑓(𝑦𝑗)‖
2
2

)︂
.

Tables A.3 and A.4 below describe the full specifications of all 304 STL-10 and

64 NYU-Depth-V2 encoders. These experiment results are visualized in Figure 2-5,

showing a clear connection between representation quality and ℒalign & ℒuniform metrics.
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ImageNet-100 Classes

n02869837 n01749939 n02488291 n02107142 n13037406 n02091831 n04517823 n04589890 n03062245 n01773797

n01735189 n07831146 n07753275 n03085013 n04485082 n02105505 n01983481 n02788148 n03530642 n04435653

n02086910 n02859443 n13040303 n03594734 n02085620 n02099849 n01558993 n04493381 n02109047 n04111531

n02877765 n04429376 n02009229 n01978455 n02106550 n01820546 n01692333 n07714571 n02974003 n02114855

n03785016 n03764736 n03775546 n02087046 n07836838 n04099969 n04592741 n03891251 n02701002 n03379051

n02259212 n07715103 n03947888 n04026417 n02326432 n03637318 n01980166 n02113799 n02086240 n03903868

n02483362 n04127249 n02089973 n03017168 n02093428 n02804414 n02396427 n04418357 n02172182 n01729322

n02113978 n03787032 n02089867 n02119022 n03777754 n04238763 n02231487 n03032252 n02138441 n02104029

n03837869 n03494278 n04136333 n03794056 n03492542 n02018207 n04067472 n03930630 n03584829 n02123045

n04229816 n02100583 n03642806 n04336792 n03259280 n02116738 n02108089 n03424325 n01855672 n02090622

Table A.2: 100 randomly selected ImageNet classes forming the ImageNet-100 subset.
These classes are the same as the ones used by Tian et al. (2020b).

A.2.2 ImageNet and ImageNet-100 with Momentum Con-

trast (MoCo) Variants

MoCo and MoCo v2 with ℒalign and ℒuniform. At each SGD iteration, let

• 𝐾 be the minibatch size,

• {𝑓(𝑥𝑖)𝑖}𝐾𝑖=1 be the batched query features encoded by the current up-to-date

encoder 𝑓 (i.e., q in Algorithm 1 of He et al. (2019)),

• {𝑓EMA(𝑦𝑖)}𝐾𝑖=1 be the batched key features encoded by the exponential moving

average encoder 𝑓EMA (i.e., k in Algorithm 1 of He et al. (2019)),

• {queue𝑗}𝑁𝑗=1 be the feature queue, where 𝑁 is the queue size.

ℒalign and ℒuniform for this minibatch are calculated as following:

• ℒalign: The minibatch alignment loss is computed as disparity between features

from the two encoders:

1

𝐾

𝐾∑︁
𝑖=1

‖𝑓(𝑥𝑖)− 𝑓EMA(𝑦𝑖)‖𝛼2 .

• ℒuniform: We experiment with two forms of ℒuniform:
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1. Only computing pairwise distance between {𝑓(𝑥𝑖)}𝑖 and {queue𝑗}𝑗:

log

(︂
1

𝑁𝐾

𝐾∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−queue𝑗‖2

2

)︂
. (A.19)

2. Also computing pairwise distance inside {𝑓(𝑥𝑖)}𝑖:

log

(︂
2

2𝑁𝐾 +𝐾(𝐾 − 1)

𝐾∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−queue𝑗‖2

2

+
2

2𝑁𝐾 +𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2

)︂
.

(A.20)

ImageNet-100 with MoCo

ImageNet-100 details. We use the same ImageNet-100 sampled by Tian et al.

(2020b), containing the 100 randomly selected classes listed in Table A.2.

MoCo settings. Our MoCo experiment settings below mostly follow He et al. (2019)

and the unofficial implementation by Tian (2019), because the official implementation

was not released at the time of performing these analyses:

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, and random

grayscale conversion, following Tian (2019).

• Encoder architecture is ResNet50 (He et al., 2016).

• We use minibatch stochastic gradient descent (SGD) with 128 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

• Optimization is done over 240 epochs, with learning rate decayed by a factor of

0.1 at epochs 120, 160, and 200.

• We use 0.999 exponential moving average factor, following He et al. (2019).

• For evaluation, we freeze the encoder, and train a linear classifier on the training

set samples, and test on the validation split. Linear classifiers are trained with
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minibatch SGD over 60 epochs, with 256 batch size, and an initial learning rate

of 10, decayed by a factor of 0.2 at epochs 30, 40, and 50.

Table A.5 below describes the full specifications of all 45 ImageNet-100 encoders.

These experiment results are visualized in Figure 2-9a, showing a clear connection

between representation quality and ℒalign & ℒuniform metrics.

ImageNet with MoCo v2

MoCo v2 settings. Our MoCo v2 experiment settings directly follow Chen et al.

(2020b) and the official implementation (Chen et al., 2020c):

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, random grayscale

conversion, and random Gaussian blurring, following Chen et al. (2020c).

• Encoder architecture is ResNet50 (He et al., 2016).

• We use minibatch stochastic gradient descent (SGD) with 256 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

• Optimization is done over 200 epochs, with learning rate decayed by a factor of

0.1 at epochs 120 and 160.

• We use 0.999 exponential moving average factor, 65536 queue size, 128 feature

dimensions.

• For evaluation, we freeze the encoder, and train a linear classifier on the training

set samples, and test on the validation split. Linear classifiers are trained with

minibatch SGD over 100 epochs, with 256 batch size, and an initial learning

rate of 30, decayed by a factor of 0.1 at epochs 60 and 80.

Unlike the MoCo experiments on ImageNet-100, which were based on unofficial

implementations for reasons stated in Sec. A.2.2, the MoCo v2 experiments on full

ImageNet were based on the official implementation by Chen et al. (2020c). We
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provide a reference implementation that can fully reproduce the results in Table 2.5

at https://github.com/SsnL/moco_align_uniform, where we also provide a model

checkpoint (trained using ℒalign and ℒuniform) of 67.694% validation top1 accuracy.

A.2.3 BookCorpus with Quick-Thought Vectors Variants

BookCorpus details. Since the original BookCorpus dataset (Zhu et al., 2015)

is not distributed anymore, we use the unofficial code by Kobayashi (2019) to recreate

our copy. Our copy ended up containing 52,799,513 training sentences and 50,000

validation sentences, compared to the original copy used by Quick-Thought Vectors

(Logeswaran and Lee, 2018), which contains 45,786,400 training sentences and 50,000

validation sentences.

Quick-Thought Vectors with ℒalign and ℒuniform. With Quick-Thought Vectors,

the positive pairs are the neighboring sentences. At each optimization iteration, let

• {𝑥𝑖}𝐾𝑖=1 be the 𝐾 consecutive sentences forming this minibatch, where 𝐾 be the

minibatch size,

• 𝑓 and 𝑔 be the two RNN sentence encoders.

The original Quick-Thought Vectors (Logeswaran and Lee, 2018) does not 𝑙2-normalize

on encoder outputs during training the encoder. Here we describe the calculation

of ℒcontrastive, ℒalign, and ℒuniform for 𝑙2-normalized encoders, in our modified Quick-

Thought Vectors method. Note that this does not affect evaluation since features are

𝑙2-normalized before using in downstream tasks, following the original Quick-Thought

Vectors (Logeswaran and Lee, 2018). For a minibatch, these losses are calculated as

following:
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• ℒcontrastive with temperature:

1

𝐾
ce(softmax({𝑓(𝑥1)T𝑔(𝑥𝑗)}𝑗), {0, 1, 0, . . . , 0})

+
1

𝐾

𝐾−1∑︁
𝑖=2

ce(softmax({𝑓(𝑥𝑖)T𝑔(𝑥𝑗)}𝑗), {0, . . . , 0⏟  ⏞  
(𝑖− 2) 0’s

,
1

2
, 0,

1

2
, 0, . . . , 0⏟  ⏞  
(𝐾 − 𝑖− 1) 0’s

})

+
1

𝐾
ce(softmax({𝑓(𝑥𝐾)T𝑔(𝑥𝑗)}𝑗), {0, . . . , 1, 0}),

where ce(𝑝, 𝑞) is the cross entropy between prediction 𝑝 and target 𝑞.

This is almost identical with the original contrastive loss used by Quick-Thought

Vectors, except that this does not additionally manually masks out the entries

𝑓(𝑥𝑖)
T𝑔(𝑥𝑖) with zeros, which is unnecessary with 𝑙2-normalization.

• ℒalign: The minibatch alignment loss is computed as disparity between features

from the two encoders encoding neighboring sentences (assuming 𝐾 >= 2):

1

𝐾
‖𝑓(𝑥1)− 𝑔(𝑥2)‖𝛼2 +

1

2𝐾

𝐾−2∑︁
𝑖=2

(‖𝑓(𝑥𝑖−1)− 𝑔(𝑥𝑖)‖𝛼2 + ‖𝑓(𝑥𝑖)− 𝑔(𝑥𝑖+1)‖𝛼2 )

+
1

𝐾
‖𝑓(𝑥𝐾−1)− 𝑔(𝑥𝐾)‖𝛼2 .

• ℒuniform: We combine the uniformity losses for each of 𝑓 and 𝑔 by summing them

(instead of averaging since 𝑓 and 𝑔 are two different encoders):

2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2 +

2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑔(𝑥𝑖)−𝑔(𝑥𝑗)‖
2
2 .

Our experiment settings below mostly follow the official implementation by Lo-

geswaran and Lee (2018):

• Sentence encoder architecture is bi-directional Gated Recurrent Unit (GRU)

(Cho et al., 2014) with inputs from a 620-dimensional word embedding trained

jointly from scratch.

• We use Adam (Kingma and Ba, 2014) with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8, 400
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batch size, 0.0005 constant learning rate, and 0.5 gradient norm clipping.

• Optimization is done during 1 epoch over the training data.

• For evaluation on a binary classification task, we freeze the encoder, and fit

a logistic classifier with 𝑙2 regularization on the encoder outputs. A 10-fold

cross validation is performed to determine the regularization strength among

{1, 2−1, . . . , 2−8}, following Kiros et al. (2015) and Logeswaran and Lee (2018).

The classifier is finally tested on the validation split.

Table A.6 below describes the full specifications of all 108 BookCorpus encoders

along with 6 settings that lead to training instability (i.e., NaN occurring). These

experiment results are visualized in Figure 2-9b, showing a clear connection between

representation quality and ℒalign & ℒuniform metrics. For the unnormalized encoders,

the features are normalized before calculated ℒalign and ℒuniform metrics, since they are

nonetheless still normalized before being used in downstream tasks (Logeswaran and

Lee, 2018).
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Appendix B

Proofs, Details, and Additional

Discussions for Chapter 3

B.1 Discussions for Section 3.2: Preliminaries on

Quasimetrics and Poisson Processes

B.1.1 Quasimetric Spaces

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (𝒳 , 𝑑), where

𝒳 is a set of points and 𝑑 : 𝒳 ×𝒳 → [0,∞] is the quasimetric, satisfying the following

conditions:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 ⇐⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Definition B.1.1 (Quasipseudometric Space). As a further generalization, we say

(𝒳 , 𝑑) is a quasipseudometric space if the Identity of Indiscernibles requirement is
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only satisfied in one direction:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 =⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Examples of Quasimetric Spaces

Proposition B.1.2 (Expected Hitting Time of a Markov Chain). Let random

variables (𝑋𝑡)𝑡 be a Markov Chain with support 𝒳 . Then (𝒳 , 𝑑hitting) is a quasimetric

space, where

𝑑hitting(𝑠, 𝑡) , E [time to hit 𝑡 | start from 𝑠] , (B.1)

where we define the hitting time of 𝑠 starting from 𝑠 to be 0.

Proof of Proposition B.1.2. Obviously 𝑑hitting is non-negative. We then verify the fol-

lowing quasimetric space properties:

• Identity of Indiscernibles. By definition, we have, ∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 ̸= 𝑦,

𝑑hitting(𝑥, 𝑥) = 0 (B.2)

𝑑hitting(𝑥, 𝑦) ≥ 1. (B.3)

• Triangle Inequality. For any 𝑥, 𝑦, 𝑧 ∈ 𝒳 , we have

𝑑hitting(𝑥, 𝑦) + 𝑑hitting(𝑦, 𝑧) = E [time to hit 𝑦 then hit 𝑧 | start from 𝑥] (B.4)

≥ E [time to hit 𝑧 | start from 𝑥] (B.5)

= 𝑑hitting(𝑥, 𝑧). (B.6)

Hence, (𝒳 , 𝑑hitting) is a quasimetric space.

Proposition B.1.3 (Conditional Shannon Entropy). Let 𝒳 be the set of random

variables (of some probability space). Then (𝒳 , 𝑑𝐻) is a quasipseudometric space,

where

𝑑𝐻(𝑋, 𝑌 ) , 𝐻(𝑌 | 𝑋). (B.7)
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If for all distinct (𝑋, 𝑌 ) ∈ 𝒳 × 𝒳 , 𝑋 can not be written as (almost surely) a deter-

ministic function of 𝑌 , then (𝒳 , 𝑑𝐻) is a quasimetric space.

Proof of Proposition B.1.3. Obviously 𝑑𝐻 is non-negative. We then verify the follow-

ing quasipseudometric space properties:

• Identity of Indiscernibles. By definition, we have, ∀𝑋, 𝑌 ∈ 𝒳 ,

𝑑𝐻(𝑋,𝑋) = 𝐻(𝑋 | 𝑋) = 0 (B.8)

𝑑𝐻(𝑌,𝑋) = 𝐻(𝑌 | 𝑋) ≥ 0, (B.9)

where ≤ is = iff 𝑌 is a (almost surely) deterministic function of 𝑋.

• Triangle Inequality. For any 𝑋, 𝑌, 𝑍 ∈ 𝒳 , we have

𝑑𝐻(𝑋, 𝑌 ) + 𝑑𝐻(𝑌, 𝑍) = 𝐻(𝑌 | 𝑋) +𝐻(𝑍 | 𝑌 ) (B.10)

≥ 𝐻(𝑌 | 𝑋) +𝐻(𝑍 | 𝑋𝑌 ) (B.11)

= 𝐻(𝑌 𝑍 | 𝑋) (B.12)

≥ 𝐻(𝑍 | 𝑋) (B.13)

= 𝑑𝐻(𝑋,𝑍). (B.14)

Hence, (𝒳 , 𝑑𝐻) is a quasipseudometric space, and a quasimetric space when the last

condition is satisfied.

Conditional Kolmogorov Complexity. From algorithmic information theory, the

conditional Kolmogorov complexity 𝐾(𝑦 | 𝑥) also similarly measures “the bits needed

to create 𝑦 given 𝑥 as input” (Kolmogorov, 1963). It is also almost a quasimetric,

but the exact definition affects some constant/log terms that may make the quasi-

metric constraints non-exact. For instance, when defined with the prefix-free version,

conditional Kolmogorov complexity is always strictly positive, even for 𝐾(𝑥 | 𝑥) > 0

(Li et al., 2008). One may remedy this with a definition using a universal Turing

machine (UTM) that simply outputs the input on empty program. But to make
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triangle inequality work, one needs to reason about how the input and output parts

work on the tape(s) of the UTM. Nonetheless, regardless of the definition details,

conditional Kolmogorov complexity do satisfy a triangle inequality up to log terms

(Grunwald and Vitányi, 2004). So intuitively, it behaves roughly like a quasimetric

defined on the space of binary strings.

Optimal Goal-Reaching Plan Costs in Markov Decision Processes (MDPs)

We define MDPs in the standard manner: ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾) (Puterman, 1994),

where 𝒮 is the state space, 𝒜 is the action space, ℛ : 𝒮×𝒜 → R is the reward function,

𝒫 : 𝒮 ×𝒜 → Δ(𝒮) is the transition function (where Δ(𝒮) is the set of all distributions

over 𝒮), and 𝛾 ∈ (0, 1) is the discount factor.

We define Π as the collection of all stationary policies 𝜋 : 𝒮 → Δ(𝒜) on ℳ. For a

particular policy 𝜋 ∈ Π, it induces random trajectories :

• Trajectory starting from state 𝑠 ∈ 𝒮 is the random variable

𝜉𝜋(𝑠) = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . . ), (B.15)

distributed as

𝑠1 = 𝑠 (B.16)

𝑎𝑖 ∼ 𝜋(𝑠𝑖), ∀𝑖 ≥ 1 (B.17)

𝑠𝑖+1 ∼ 𝒫(𝑠𝑖, 𝑎𝑖), ∀𝑖 ≥ 1. (B.18)

• Trajectory starting from state-action pair (𝑠, 𝑎) ∈ 𝒮 ×𝒜 is the random variable

𝜉𝜋(𝑠, 𝑎) = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . . ), (B.19)
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distributed as

𝑠1 = 𝑠 (B.20)

𝑎1 = 𝑎 (B.21)

𝑎𝑖 ∼ 𝜋(𝑠𝑖), ∀𝑖 ≥ 2 (B.22)

𝑠𝑖+1 ∼ 𝒫(𝑠𝑖, 𝑎𝑖), ∀𝑖 ≥ 1. (B.23)

Proposition B.1.4 (Optimal Goal-Reaching Plan Costs in MDPs). Consider

an MDP ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾). WLOG, assume that ℛ : 𝒮 × 𝒜 → (−∞, 0] has only

non-positive rewards (i.e., negated costs). Let 𝒳 = 𝒮 ∪ (𝒮 ×𝒜). Then (𝒳 , 𝑑sum) and

(𝒳 , 𝑑𝛾) are quasipseudometric spaces, where

𝑑sum(𝑥, 𝑦)

, min
𝜋∈Π

E [total costs from 𝑥 to 𝑦 under 𝜋] (B.24)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min𝜋∈Π E(𝑠1,𝑎1,𝑟1,... )=𝜉𝜋(𝑥)

[︀
−
∑︀

𝑡 𝑟𝑡 1𝑠′ /∈{𝑠𝑖}𝑖∈[𝑡]⏟  ⏞  
not reached 𝑠′ yet

]︀
if 𝑦 = 𝑠′ ∈ 𝒮⏟  ⏞  

goal is a state

,

min𝜋∈Π E(𝑠1,𝑎1,𝑟1,... )=𝜉𝜋(𝑥)

[︀
−
∑︀

𝑡 𝑟𝑡 1(𝑠′,𝑎′)/∈{(𝑠𝑖,𝑎𝑖)}𝑖∈[𝑡−1]⏟  ⏞  
not reached 𝑠′ and performed 𝑎′ yet

]︀
if 𝑦 = (𝑠′, 𝑎′) ∈ 𝒮 ×𝒜⏟  ⏞  

goal is a state-action pair

,

(B.25)

and

𝑑𝛾(𝑥, 𝑦) , log𝛾 max
𝜋∈Π

E
[︀
𝛾total costs from 𝑥 to 𝑦 under 𝜋]︀ (B.26)

is defined similarly.

If the reward function is always negative, (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasimetric

spaces.

Proof of Proposition B.1.4. Obviously both 𝑑sum and 𝑑𝛾 are non-negative, and satisfy

Identity of Indiscernibles (for quasipseudometric spaces). For triangle inequality, note

that for each 𝑦, we can instead consider alternative MDPs:

• If 𝑦 = 𝑠′ ∈ 𝒮, modify the original MDP to make 𝑠′ a sink state, where performing
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any action yields 0 reward (i.e., 0 cost);

• If 𝑦 = (𝑠′, 𝑎′) ∈ 𝒮 ×𝒜, modify the original MDP such that performing action 𝑎′

in state 𝑠′ surely transitions to a new sink state, where performing any action

yields 0 reward (i.e., 0 cost).

Obviously, both are Markovian. Furthermore, they are Stochastic Shortest Path

problems with no negative costs (Guillot and Stauffer, 2020), implying that there are

Markovian (i.e., stationary) optimal policies (respectively w.r.t. either minimizing

expected total cost or maximizing expected 𝛾total cost). Thus optimizing over the set

of stationary policies, Π, gives the optimal quantity over all possible policies, including

concatenation of two stationary policies. Thus the triangle inequality is satisfied by

both.

Hence, (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasipseudometric spaces.

Finally, if the reward function is always negative, 𝑥 ̸= 𝑦 =⇒ 𝑑sum(𝑥, 𝑦) >

0 and 𝑑𝛾(𝑥, 𝑦) > 0, so (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasimetric spaces.

Remark B.1.5. We make a couple remarks:

• Any MDP with a bounded reward function can be modified to have only non-

positive rewards by subtracting the maximum reward (or larger);

• We have

𝑑sum(𝑠, (𝑠, 𝑎)) = 𝑑𝛾(𝑠, (𝑠, 𝑎)) = −ℛ(𝑠, 𝑎). (B.27)

• When the dynamics is deterministic, 𝑑sum ≡ 𝑑𝛾, ∀𝛾 ∈ (0, 1).

• Unless 𝑦 is reachable from 𝑥 with probability 1 under some policy, 𝑑sum(𝑥, 𝑦) =

∞.

• Unless 𝑦 is unreachable from 𝑥 with probability 1 under all policies, 𝑑sum(𝑥, 𝑦) <

∞. Therefore, it is often favorable to consider 𝑑𝛾 types.

• In certain MDP formulations, the reward is stochastic and/or dependent on the

reached next state. The above definitions readily extend to those cases.
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• 𝛾𝑑𝛾((𝑠,𝑎),𝑦) is very similar to Q-functions except that Q-function applies discount

based on time, and 𝛾𝑑𝛾((𝑠,𝑎),𝑦) applies discount based on costs. We note that a

Q-learning-like recurrence can also be found for 𝛾𝑑𝛾((𝑠,𝑎),𝑦).

If the cost is constant in the sense for some fixed 𝑐 < 0, ℛ(𝑠, 𝑎) = 𝑐, ∀(𝑠, 𝑎) ∈

𝒮 × 𝒜, then time and cost are equivalent up to a scale. Therefore, 𝛾𝑑𝛾((𝑠,𝑎),𝑦)

coincides with the optimal Q-functions for the MDPs described in proof, and

𝛾𝑑𝛾(𝑠,𝑦) coincides with the optimal value functions for the respective MDPs.

Quasimetric Treewidth and Graph Treewidth

Definition 3.2.2 (Treewidth of Quasimetric Spaces (Mémoli et al., 2018)). Consider

representations of a quasimetric space 𝑀 as shortest-path distances on a positively-

weighted directed graph. Treewidth of 𝑀 is the minimum over all such graphs’

treewidths. (Recall that the treewidth of a graph (after replacing directed edges with

undirected ones) is a measure of its complexity.)

Graph treewidth is a standard complexity measure of how “similar” a graph is to a

tree (Robertson and Seymour, 1984). Informally speaking, if a graph has low treewidth,

we can represent it as a tree, preserving all connected paths between vertices, except

that in each tree node, we store a small number of vertices (from the original graph)

rather than just 1.

Graph treewidth is widely used by the Theoretical Computer Science and Graph

Theory communities, since many NP problems are solvable in polynomial time for

graphs with bounded treewidth (Bertele and Brioschi, 1973).

B.1.2 Poisson Processes

Definition 3.2.3 (Poisson Process). For nonatomic measure 𝜇 on set 𝐴, a Poisson

process on 𝐴 with mean measure 𝜇 is a random countable subset 𝑃 ⊂ 𝐴 (i.e., the

random events / points) such that

• for any disjoint measurable subsets 𝐴1, . . . , 𝐴𝑛 of 𝐴, the random variables

𝑁(𝐴1), . . . , 𝑁(𝐴𝑛) are independent, where 𝑁(𝐵) , #{𝑃 ∩𝐵} is the number
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of points of 𝑃 in 𝐵, and

• 𝑁(𝐵) has the Poisson distribution with mean 𝜇(𝐵), denoted as Pois(𝜇(𝐵)).

Poisson processes are usually used to model events that randomly happens “with

no clear pattern”, e.g., visible stars in a patch of the sky, arrival times of Internet

packages to a data center. These events may randomly happen all over the sky / time.

To an extent, we can say that their characteristic feature is a property of statistical

independence (Kingman, 2005).

To understand this, imagine raindrops hitting the windshield of a car. Suppose that

we already know that the rain is heavy, knowing the exact pattern of the raindrops

hitting on the left side of the windshield tells you little about the hitting pattern on

the right side. Then, we may assume that, as long as we look at regions that are

disjoint on the windshield, the number of raindrops in each region are independent.

This is the fundamental motivation of Poisson processes. In a sense, from this

characterization, Poisson processes are inevitable (see Sec. 1.4 of (Kingman, 2005)).

Poisson Race Probability P [Pois(𝜇1) ≤ Pois(𝜇2)] and Its Gradient Formulas

In Fact 3.2.4 we made several remarks on the Poisson race probability, i.e., for

independent 𝑋 ∼ Pois(𝜇1), 𝑌 ∼ Pois(𝜇2), the quantity P [𝑋 ≤ 𝑌 ]. In this section,

we detailedly describe how we arrived at those conclusions, and provide the exact

gradient formulas for differentiating P [𝑋 ≤ 𝑌 ] w.r.t. 𝜇1 and 𝜇2.

From Skellam distribution CDF to Non-Central 𝜒2 distribution CDF. Dis-

tribution of the difference of two independent Poisson random variables is called the

Skellam distribution (Skellam, 1946), with its parameter being the rate of the two

Poissons. That is, 𝑋 − 𝑌 ∼ Skellam(𝜇1, 𝜇2). Therefore, P [𝑋 ≤ 𝑌 ] is essentially the

cumulative distribution function (CDF) of this Skellam at 0. In Eq. (4) of (Johnson,

1959), a connection is made between the CDF of Skellam(𝜇1, 𝜇2) distribution, and

the CDF of a non-central 𝜒2 distribution (which is a non-centered generalization of

𝜒2 distribution) with two parameters 𝑘 > 0 degree(s) of freedom and non-centrality
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parameter 𝜆 ≥ 0): for integer 𝑛 > 0,

P [Skellam(𝜇1, 𝜇2) ≥ 𝑛] = P
[︀
NonCentral𝜒2( 2𝑛⏟ ⏞ 

degree(s) of freedom

, 2𝜇2⏟ ⏞ 
non-centrality parameter

) < 2𝜇1

]︀
, (B.28)

which can be evaluated using statistical computing packages such as SciPy (Virtanen

et al., 2020) and CDFLIB (Burkardt, 2021; Brown et al., 1994).

Marcum-Q-Function and gradient formulas. To differentiate through Equa-

tion (B.28), we consider representing the non-central 𝜒2 CDF as a Marcum-Q-function

(Marcum, 1950). One definition of the Marcum-Q-function 𝑄𝑀 : R × R → R in

statistics is

𝑄𝑀(𝑎, 𝑏) ,
∫︁ ∞

𝑏

𝑥
(︁𝑥
𝑎

)︁𝑀−1

exp

(︂
−𝑥

2 + 𝑎2

2

)︂
𝐼𝑀−1(𝑎𝑥) d𝑥, (B.29)

where 𝐼𝑀−1 is the modified Bessel function of order 𝑀 − 1. (When 𝑀 is non-integer,

we refer readers to (Brychkov, 2012; Marcum, 1950) for definitions, which are not

relevant to the discussion below.) When used in CDF of non-central 𝜒2, we have

P
[︀
NonCentral𝜒2(𝑘, 𝜆) < 𝑥

]︀
= 1−𝑄 𝑘

2
(
√
𝜆,

√
𝑥). (B.30)

Combining with Equation (B.28), and using the symmetry Skellam(𝜇1, 𝜇2)
𝑑
= −Skellam(𝜇2, 𝜇1),

we have, for integer 𝑛,

P [𝑋 ≤ 𝑌 + 𝑛] = P [Skellam(𝜇1, 𝜇2) ≤ 𝑛] (B.31)

=

⎧⎪⎨⎪⎩P [NonCentral𝜒2(−2𝑛, 2𝜇1) < 2𝜇2] if 𝑛 < 0

1− P [NonCentral𝜒2(2(𝑛+ 1), 2𝜇2) < 2𝜇1] if 𝑛 ≥ 0

(B.32)

=

⎧⎪⎨⎪⎩1−𝑄−𝑛(
√
2𝜇1,

√
2𝜇2) if 𝑛 < 0

𝑄𝑛+1(
√
2𝜇2,

√
2𝜇1) if 𝑛 ≥ 0.

(B.33)
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Prior work (Brychkov, 2012) provides several derivative formula for the Marcum-Q-

Function:

• For 𝑛 < 0, we have

𝜕

𝜕𝜇1

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇1

(︁
1−𝑄−𝑛(

√︀
2𝜇1,

√︀
2𝜇2)

)︁
(B.34)

= 𝑄−𝑛(
√︀
2𝜇1,

√︀
2𝜇2)−𝑄−𝑛+1(

√︀
2𝜇1,

√︀
2𝜇2)

(Eq. (16) of (Brychkov, 2012))

= −
(︂
𝜇2

𝜇1

)︂−𝑛
2

𝑒−(𝜇1+𝜇2)𝐼−𝑛(2
√
𝜇1𝜇2)

(Eq. (2) of (Brychkov, 2012))

= −
(︂
𝜇2

𝜇1

)︂−𝑛
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
−𝑛(2

√
𝜇1𝜇2), (B.35)

where 𝐼(𝑒)𝑣 (𝑥) , 𝑒−|𝑥|𝐼𝑣(𝑥) is the exponentially-scaled version of 𝐼𝑣 that comput-

ing libraries often provide due to its superior numerical precision (e.g., SciPy

(Virtanen et al., 2020)),

𝜕

𝜕𝜇2

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇2

(︁
1−𝑄−𝑛(

√︀
2𝜇1,

√︀
2𝜇2)

)︁
(B.36)

=

(︂
𝜇2

𝜇1

)︂−𝑛+1
2

𝑒−(𝜇1+𝜇2)𝐼−𝑛−1(2
√
𝜇1𝜇2)

(Eq. (19) of (Brychkov, 2012))

=

(︂
𝜇2

𝜇1

)︂−𝑛+1
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
−𝑛−1(2

√
𝜇1𝜇2), (B.37)

• For 𝑛 ≥ 0, we have

𝜕

𝜕𝜇1

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇1

𝑄𝑛+1(
√︀
2𝜇2,

√︀
2𝜇1) (B.38)

= −
(︂
𝜇1

𝜇2

)︂𝑛
𝑒−(𝜇1+𝜇2)𝐼𝑛(2

√
𝜇1𝜇2)

(Eq. (19) of (Brychkov, 2012))

= −
(︂
𝜇1

𝜇2

)︂𝑛
𝑒−(

√
𝜇1−

√
𝜇2)2𝐼(𝑒)𝑛 (2

√
𝜇1𝜇2), (B.39)
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and,

𝜕

𝜕𝜇2

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇2

𝑄𝑛+1(
√︀

2𝜇2,
√︀

2𝜇1) (B.40)

= 𝑄𝑛+2(
√︀

2𝜇2,
√︀

2𝜇1)−𝑄𝑛+1(
√︀

2𝜇2,
√︀

2𝜇1)

(Eq. (16) of (Brychkov, 2012))

=

(︂
𝜇1

𝜇2

)︂𝑛+1
2

𝑒−(𝜇1+𝜇2)𝐼𝑛+1(2
√
𝜇1𝜇2)

(Eq. (2) of (Brychkov, 2012))

=

(︂
𝜇1

𝜇2

)︂𝑛+1
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
𝑛+1(2

√
𝜇1𝜇2). (B.41)

Setting 𝑛 = 0 gives the proper forward and backward formulas for P [𝑋 ≤ 𝑌 ].

B.2 Proofs, Discussions and Additional Results for

Section 3.4: Theoretical Analysis of Various Learn-

ing Algorithms

Assumptions. Recall that we assumed a quasimetric space, which is stronger than

a quasipseudometric space (Definition B.1.1), with finite distances. These are rather

mild assumptions, since any quasipseudometric with infinities can always be modified

to obey these assumptions by (1) adding a small metric (e.g., 𝑑𝜖(𝑥, 𝑦) , 𝜖1𝑥 ̸=𝑦 with

small 𝜖 > 0) and (2) capping the infinite distances to a large value higher than any

finite distance.

Worst-case analysis. In this work we focus on the worst-case scenario, as is

common in standard (quasi)metric embedding analyses (Bourgain, 1985; Johnson and

Lindenstrauss, 1984; Indyk, 2001; Mémoli et al., 2018). Such results are important

because embeddings are often used as heuristics in downstream tasks (e.g., planning)

which are sensitive to any error. While our negative result readily extends to the

average-case scenario (since the error (distortion or violation) is arbitrary), we leave a
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thorough average-case analysis as future work.

Data-independent bounds. We analyze possible data-independent bounds for

various algorithms. In this sense, the positive result for PQEs (Theorem B.3.4) is

really strong, showing good guarantees regardless data quasimetric. The negative

result (Theorem 3.4.6) is also revealing, indicating that a family of algorithms should

probably not be used, unless we know something more about data. Data-independent

bounds are often of great interest in machine learning (e.g., concepts of VC-dimension

(Vapnik and Chervonenkis, 2015) and PAC learning (Valiant, 1984)). An important

future work is to explore data-dependent results, possibly via defining a quasimetric

complexity metric that is both friendly for machine learning analysis, and connects

well with combinatorics measures such as quasimetric treewidth.

Violation and distortion metrics. The optimal violation has value 1. Specifically,

it is 1 iff 𝑑 is a quasimetric on 𝒳 (assuming non-negativity). Distortion (over training

set) and violation together quantify how well 𝑑 learns a quasimetric consistent with

the training data. A predictor can fit training data well (low distortion), but ignores

basic quasimetric constraints on heldout data (high violation). Conversely, a predictor

can perfectly obey the training data constraints (low violation), but doesn’t actually

fit training data well (high distortion). Indeed, (assuming non-negativity and Identity

of Indiscernibles), perfect distortion (value 1) and violation (value 1) imply that 𝑑 is a

quasimetric consistent with training data.

Relation with classical in-distribution generalization studies. Classical gen-

eralization studies the prediction error over the underlying data distribution, and

often involves complexity of the hypothesis class and/or training data (Vapnik and

Chervonenkis, 2015; McAllester, 1999). Our focus on quasimetric constraints violation

is, in fact, not an orthogonal problem, but potentially a core part of in-distribution

generalization for this setting. Here, the underlying distribution is supported on all

pairs of 𝒳 × 𝒳 . Indeed, if a learning algorithm has large distortion, it must attain

large prediction error on 𝑆 ⊂ 𝒳 × 𝒳 ; if it has large violation, it must violates the
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quasimetric constraints and necessarily admits bad prediction error on some pairs

(whose true distances obey the quasimetric constraints). Theorem 3.4.3 (proved below)

formalizes this idea, where we characterize generalization with the distortion over all

possible pairs in 𝒳 × 𝒳 .

B.2.1 Theorem 3.4.3: Distortion and Violation Lower-Bound

Generalization Error

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-

ror). For non-negative 𝑑, dis(𝑑) ≥ max(dis𝑆(𝑑),
√︀

vio(𝑑)), where dis(𝑑) captures gen-

eralization over the entire 𝒳 space.

Proof

Proof of Theorem 3.4.3. It is obvious that

dis(𝑑) ≥ dis𝑆(𝑑). (B.42)

Therefore, it remains to show that dis(𝑑) ≥
√︁

vio(𝑑).

WLOG, say vio(𝑑) > 1. Otherwise, the statement is trivially true.

By the definition of violation (see Definition 3.4.2), we have, for some 𝑥, 𝑦, 𝑧 ∈ 𝒳 ,

with 𝑑(𝑥, 𝑧) > 0,
𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
= vio(𝑑). (B.43)

If 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) = 0, then we must have one of the following two cases:

• If 𝑑(𝑥, 𝑦) > 0 or 𝑑(𝑦, 𝑧) > 0, the statement is true because dis(𝑑) = ∞.

• If 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑧) = 0, then 𝑑(𝑥, 𝑧) = 0 and the statement is true since

dis(𝑑) ≥ 𝑑(𝑥,𝑧)
𝑑(𝑥,𝑧)

= ∞.
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It is sufficient to prove the case that 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) > 0. We can derive

𝑑(𝑥, 𝑧) = vio(𝑑)
(︁
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

)︁
(B.44)

≥ vio(𝑑)

dis(𝑑)

(︁
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

)︁
(B.45)

≥ vio(𝑑)

dis(𝑑)
𝑑(𝑥, 𝑧). (B.46)

If 𝑑(𝑥, 𝑧) = 0, then dis(𝑑) = ∞ and the statement is trivially true.

If 𝑑(𝑥, 𝑧) > 0, above Equation (B.46) implies

dis(𝑑) ≥ 𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑧)
≥ vio(𝑑)

dis(𝑑)
=⇒ dis(𝑑) ≥

√︁
vio(𝑑). (B.47)

Combining Equations (B.42) and (B.47) gives the desired statement.

B.2.2 Lemma 3.4.5: Examples of OrthEquiv Algorithms

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). 𝑘-nearest-neighbor with

Euclidean distance, dot-product kernel ridge regression (including min-norm linear

regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Recall the definition of Equivariant Learning Transforms.

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set 𝒟 = {(𝑧𝑖, 𝑦𝑖)}𝑖,

where 𝑧𝑖 ∈ 𝒵 are inputs and 𝑦𝑖 ∈ 𝒴 are targets, a learning algorithm Alg produces a

function Alg(𝒟) : 𝒵 → 𝑌 such that Alg(𝒟)(𝑧′) is the function’s prediction on sample

𝑧′. Consider 𝒯 a set of transformations 𝒵 → 𝒵. Alg is equivariant to 𝒯 iff for all trans-

form 𝑇 ∈ 𝒯 , training set 𝒟, Alg(𝒟) = Alg(𝑇𝒟)∘𝑇 , where 𝑇𝒟 = {(𝑇𝑧, 𝑦) : (𝑧, 𝑦) ∈ 𝒟}

is the training set with transformed inputs.

Proof

Proof of Lemma 3.4.5. We consider the three algorithms individually:
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• 𝑘-nearest neighbor with Euclidean distance.

It is evident that if a learning algorithm only depend on pairwise dot prod-

ucts (or distances), it is equivariant to orthogonal transforms, which preserve

dot products (and distances). 𝑘-nearest-neighbor with Euclidean distance only

depends on pairwise distances, which can be written in terms of dot products:

‖𝑥− 𝑦‖22 = 𝑥T𝑥+ 𝑦T𝑦 − 2𝑥T𝑦. (B.48)

Therefore, it is equivariant to orthogonal transforms.

• Dot-product kernel ridge regression.

Since orthogonal transforms preservers dot-products, dot-product kernel ridge

regression is equivariant to them.

As two specific examples, let’s look at linear regression and NTK for fully-

connected MLPs.

– Min-norm least-squares linear regression.

Recall that the solution to min-norm least-squares linear regression 𝐴𝑥 = 𝑏

is given by Moore–Penrose pseudo-inverse 𝑥 = 𝐴+𝑏. For any matrix 𝐴 ∈

R𝑚×𝑛 with SVD 𝑈Σ𝑉 * = 𝐴, and 𝑇 ∈ 𝑂(𝑛) (where 𝑂(𝑛) is the orthogonal

group in dimension 𝑛), we have

(𝐴𝑇T)+ = (𝑈Σ𝑉 *𝑇T)+ = 𝑇𝑉 Σ+𝑈* = 𝑇𝐴+, (B.49)

where we used 𝑇 * = 𝑇T for 𝑇 ∈ 𝑂(𝑛). The solution for the transformed

data 𝐴𝑇T and 𝑏 is thus

(𝐴𝑇T)+𝑏 = 𝑇𝐴+𝑏. (B.50)
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Thus, for any new data point �̃� ∈ R𝑛 and its transformed version 𝑇 �̃� ∈ R𝑛,

(𝑇 �̃�)T(𝐴𝑇T)+𝑏⏟  ⏞  
transformed problem prediction

= �̃�T𝑇T𝑇𝐴+ = �̃�𝐴+⏟ ⏞ 
original problem prediction

. (B.51)

Hence, min-norm least-squares linear regression is equivariant to orthogo-

nal transforms.

– MLP trained with squared loss in NTK regime.

We first recall the NTK recursive formula from (Jacot et al., 2018).

Denote the NTK for a MLP with 𝐿 layers with the scalar kernel Θ(𝐿) : R𝑑×

R𝑑 → R. Let 𝛽 > 0 be the (fixed) parameter for the bias strength in the

network model, and 𝜎 be the activation function. Given 𝑥, 𝑧 ∈ R𝑑, it can

be recursively defined as following. For ℎ ∈ [𝐿],

Θ(ℎ)(𝑥, 𝑧) , Θ(ℎ−1)(𝑥, 𝑧)Σ̇(ℎ)(𝑥, 𝑧) + Σ(ℎ)(𝑥, 𝑧), (B.52)

where

Σ(0)(𝑥, 𝑧) =
1

𝑑
𝑥T𝑧 + 𝛽2, (B.53)

Λ(ℎ−1)(𝑥, 𝑧) =

⎛⎝Σ(ℎ−1)(𝑥, 𝑥) Σ(ℎ−1)(𝑥, 𝑧)

Σ(ℎ−1)(𝑧, 𝑥) Σ(ℎ−1)(𝑧, 𝑧)

⎞⎠ , (B.54)

Σ(ℎ)(𝑥, 𝑧) = 𝑐 · E(𝑢,𝑣)∼𝒩 (0,Λ(ℎ−1)) [𝜎(𝑢)𝜎(𝑣)] + 𝛽2, (B.55)

Σ̇(ℎ)(𝑥, 𝑧) = 𝑐 · E(𝑢,𝑣)∼𝒩 (0,Λ(ℎ−1)) [�̇�(𝑢)�̇�(𝑣)] , (B.56)

for some constant 𝑐.

It is evident from the recursive formula, that Θ(ℎ)(𝑥, 𝑧) only depends on

𝑥T𝑥, 𝑧T𝑧 and 𝑥T𝑧. Therefore, the NTK is invariant to orthogonal trans-

forms.

Furthermore, training an MLP in NTK regime is the same as kernel regres-

sion with the NTK (Jacot et al., 2018), which has a unique solution only

depending on the kernel matrix on training set, denoted as 𝐾train ∈ R𝑛×𝑛,
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where 𝑛 is the training set size. Specifically, for training data {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛],

the solution 𝑓 *
NTK : R → R can be written as

𝑓 *
NTK(𝑥) =

(︁
Θ(𝐿)(𝑥, 𝑥1) Θ(𝐿)(𝑥, 𝑥2) · · · Θ(𝐿)(𝑥, 𝑥𝑛)

)︁
𝐾−1

train𝑦, (B.57)

where 𝑦 =
(︁
𝑦1 𝑦2 . . . 𝑦𝑛

)︁
is the vector of training labels.

Consider any orthogonal transform 𝑇 ∈ 𝑂(𝑑), and the NTK regression

trained on the transformed data {(𝑇𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛]. Denote the solution as

𝑓 *
NTK,𝑇 : R → R. As we have shown, 𝐾−1

train is invariant to such transforms,

and remains the same. Therefore,

𝑓 *
NTK,𝑇 (𝑇𝑥) =

(︁
Θ(𝐿)(𝑇𝑥, 𝑇𝑥1) Θ(𝐿)(𝑇𝑥, 𝑇𝑥2) · · · Θ(𝐿)(𝑇𝑥, 𝑇𝑥𝑛)

)︁
𝐾−1

train𝑦

(B.58)

=
(︁
Θ(𝐿)(𝑥, 𝑥1) Θ(𝐿)(𝑥, 𝑥2) · · · Θ(𝐿)(𝑥, 𝑥𝑛)

)︁
𝐾−1

train𝑦 (B.59)

= 𝑓 *
NTK(𝑥). (B.60)

Hence, MLPs trained (with squared loss) in NTK regime is equivariant to

orthogonal transforms.

Furthermore, we note that there are many variants of MLP NTK formulas

depending on details such as the particular initialization scheme and bias

settings. However, they usually only lead to slight changes that do not

affect our results. For example, while the above recursive NTK formula

are derived assuming that the bias terms are initialized with a normal

distribution (Jacot et al., 2018), the formulas for initializing bias as zeros

(Geifman et al., 2020) does not affect the dependency only on dot product,

and thus our results still hold true.

These cases conclude the proof.
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𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
≥ 𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝑑(𝑦, 𝑧))

Training ( ) : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦) = 1, 𝑑(𝑦, 𝑤′) = 1.

Test ( ) : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1 1

? 𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑦, 𝑧)

𝑑(𝑦, 𝑤) + 𝑑(𝑤, 𝑧)
≥ 𝑑(𝑦, 𝑧)

2 · dis𝑆(𝑑)

Training ( ) : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦′) = 1, 𝑑(𝑦, 𝑤) = 1.

Test ( ) : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1

1?

Figure B-1: Two training sets pose incompatible constraints ( ) for the test pair distance
𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can exchange (*, 𝑦) ↔ (*, 𝑦′) and
(*, 𝑤) ↔ (*, 𝑤′), leaving the test pair (𝑦, 𝑧) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

B.2.3 Theorem 3.4.6: Failure of OrthEquiv Algorithms

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (𝑓𝑛)𝑛 be an arbitrary se-

quence of large values. There is an infinite sequence of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛

with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that, over a random training set 𝑆 of size 𝑚, any

OrthEquiv algorithm outputs a predictor 𝑑 that

• 𝑑 fails non-negativity, or

• max(dis𝑆(𝑑), vio(𝑑)) ≥ 𝑓𝑛 (i.e., 𝑑 approximates training 𝑆 badly or is far from

a quasimetric),
with probability 1/2 − 𝑜(1), as long as 𝑆 does not contain almost all of the pairs

1−𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Recall that the little-Omega notation means 𝑓 = 𝜔(𝑔) ⇐⇒ 𝑔 = 𝑜(𝑓).

Proof

Proof strategy. In our proof below, we will extend the construction discussed in

Section 3.4.2 to large quasimetric spaces (reproduced here as Figure B-1). To do so,

we
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1. Construct large quasimetric spaces containing many copies of the (potentially

failing) structure in Figure B-1, where we can consider training sets of certain

properties such that

• we can pair up such training sets,

• an algorithm equivariant to orthogonal transforms must fail on one of them,

• for each pair, the two training sets has equal probability of being sampled;

Then, it remains to show that with probability 1−𝑜(1) we end up with a training

set of such properties.

2. Consider sampling training set as independently collecting each pair with a

certain probability 𝑝, and carefully analyze the conditions to sample a training

set with the special properties with high probability 1− 𝑜(1).

3. Extend to fixed-size training sets and show that, under similar conditions, we

sample a training set with the special properties with high probability 1− 𝑜(1).

In the discussion below and the proof, we will freely speak of infinite distances

between two elements of 𝒳 , but really mean a very large value (possibly finite). This

allows us to make the argument clearer and less verbose. Therefore, we are not

restricting the applicable settings of Theorem 3.4.6 to quasimetrics with (or without)

infinite distances.

In Section 3.4.2, we showed how orthogonal-transform-equivariant algorithms can

not predict 𝑑(𝑦, 𝑧) differently for the two particular quasimetric spaces and their

training sets shown in Figure B-1.

But are these the only bad training sets? Before the proof, let us consider what kinds

of training sets are bad for these two quasimetric spaces. Consider the quasimetrics

𝑑left and 𝑑right over 𝒳 , {𝑥, 𝑦, 𝑦′, 𝑧, 𝑤, 𝑤′}, with distances as shown in the left and

right parts of Figure B-1, where we assume that the unlabeled pairs have infinite

distances except in the left pattern 𝑑(𝑥,𝑤′) ≤ 2, and in the both patterns 𝑑(𝑦, 𝑧) has

some appropriate value consistent with the respective triangle inequality.

Specifically, we ask:
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• For what training sets 𝑆left ⊂ 𝒳 ×𝒳 can we interchange 𝑦 ↔ 𝑦′ and 𝑤 ↔ 𝑤′ on

2nd input to obtain a valid training set for 𝑑right, regardless of 𝑐?

• For what training sets 𝑆right ⊂ 𝒳 × 𝒳 can we interchange 𝑦 ↔ 𝑦′ and 𝑤 ↔ 𝑤′

on 2nd input to obtain a valid training set for 𝑑left, regardless of 𝑐?

Note that if 𝑆left (or 𝑆right) satisfies its condition, the predictor 𝑑 from an algorithm

equivariant to orthogonal transforms must (1) predict 𝑑(𝑦, 𝑧) identically and (2) attain

the same training set distortion on it and its transformed training set. As we will see

in the proof for Theorem 3.4.6, this implies large distortion or violation for appropriate

𝑐.

Intuitively, all we need is that the transformed data do not break quasimetric

constraints. However, its conditions are actually nontrivial as we want to set 𝑐 to

arbitrary:

• We can’t have (𝑥,𝑤) ∈ 𝑆right because it would be transformed into (𝑥,𝑤′) which

has 𝑑left(𝑥,𝑤′) ≤ 2. Then 𝑑right(𝑥,𝑤) ≤ 2 and then restricts the possible values

of 𝑐 due to triangle inequality with 𝑑right(𝑤, 𝑧) = 1. For similar reasons, we can’t

have (𝑥,𝑤′) ∈ 𝑆left. In fact, we can’t have a path of finite total distance from 𝑥

to 𝑤 (or 𝑤′) in 𝑆right (or 𝑆left).

• We can not have (𝑦′, 𝑦′) ∈ 𝑆(·) (which has distance 0), which would get trans-

formed into (𝑦′, 𝑦) with distance 0, which (on the other pattern) would restrict

the possible values of 𝑐 due to triangle inequality. For similar reasons (𝑤′, 𝑤′),

and cycles containing 𝑦′ or 𝑤′ with finite total distance, should be avoided.

• For the theoretical analysis, we assumed that the truth 𝑑 is a quasimetric rather

than just being a quasipseudometric. The difference is that quasipseudometric

additionally allows two distinct elements to have 0 distance. This assumptions

allows us to freely talk about distance ratios for defining distortion and violation.

For this particular reason, we can’t allow (𝑦, 𝑦′), (𝑦′, 𝑦), (𝑤,𝑤′), (𝑤′, 𝑤), (𝑦, 𝑦)

or (𝑤,𝑤), as they break this assumption. However, with metrics more friendly

to zero distances (than distortion and violation, which are based on distance
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ratios), it might be possible to allow them and obtain better bounds in the

second-moment argument below in the proof for Theorem 3.4.6.

With these understandings of the pattern shown in Figure B-1, we are ready to

discuss the constructed quasimetric space and training sets.

Proof of Theorem 3.4.6. Our proof follows the outline listed above.

1. Construct large quasimetric spaces containing many copies of the

(potentially failing) structure in Figure B-1.

For any 𝑛 > 0, consider the following quasimetric space (𝒳𝑛, 𝑑𝑛) of size 𝑛, with

one-hot features. WLOG, assume 𝑛 = 12𝑘 is a multiple of 12. If it is not, set

at most 11 elements to have infinite distance with every other node. This won’t

affect the asymptotics. Let the 𝑛 = 12𝑘 elements of the space be

𝒳𝑛 ={𝑥left1 , . . . , 𝑥left𝑘 , 𝑥right1 , . . . , 𝑥right𝑘 ,𝑤left
1 , . . . , 𝑤left

𝑘 , 𝑤right
1 , . . . , 𝑤right

𝑘 ,

𝑦left1 , . . . , 𝑦left𝑘 , 𝑦right1 , . . . , 𝑦right𝑘 ,𝑤′left
1 , . . . , 𝑤′left

𝑘 ,𝑤′right
𝑘+1 , . . . , 𝑤

′right
2𝑘 ,

𝑦′left1 , . . . , 𝑦′left𝑘 ,𝑦′right𝑘+1 , . . . 𝑦
′right
2𝑘 , 𝑧1, . . . , 𝑧𝑘, 𝑧𝑘+1, . . . , 𝑧2𝑘}, (B.61)

with quasimetric distances, ∀𝑖, 𝑗,

𝑑𝑛(𝑥
left
𝑖 , 𝑧𝑗) = 𝑑𝑛(𝑥

right
𝑖 , 𝑧𝑗) = 𝑐 (B.62)

𝑑𝑛(𝑤
left
𝑖 , 𝑧𝑗) = 𝑑𝑛(𝑤

right
𝑖 , 𝑧𝑗) = 1 (B.63)

𝑑𝑛(𝑥
left
𝑖 , 𝑦left𝑖 ) = 𝑑𝑛(𝑥

right
𝑖 , 𝑦′right𝑖 ) = 1 (B.64)

𝑑𝑛(𝑦
left
𝑖 , 𝑤′left

𝑖 ) = 𝑑𝑛(𝑦
right
𝑖 , 𝑤right

𝑖 ) = 1 (B.65)

𝑑𝑛(𝑥
left
𝑖 , 𝑤′left

𝑖 ) = 2 (B.66)

𝑑𝑛(𝑦
left
𝑖 , 𝑧𝑗) = 𝑐 (B.67)

𝑑𝑛(𝑦
right
𝑖 , 𝑧𝑗) = 2, (B.68)

where subscripts are colored to better show when they are the same (or dif-

ferent), unlisted distances are infinite (except that 𝑑𝑛(𝑢, 𝑢) = 0, ∀𝑢 ∈ 𝒳 ).
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Essentially, we equally divide the 12𝑘 nodes into 6 “types”, {𝑥, 𝑦, 𝑤, 𝑧, 𝑤′, 𝑦′},

corresponding to the 6 nodes from Figure B-1, where each type has half of

its nodes corresponding to the left pattern (of Figure B-1), and the other half

corresponding to the right pattern, except for the 𝑧 types.

Furthermore,

• Among the left-pattern nodes, each set with the same subscript are bundled

together in the sense that 𝑥left𝑖 only has finite distance to 𝑦left𝑖 which only

has finite distance to 𝑤′left
𝑖 (instead of other 𝑦left𝑗 ’s or 𝑤′left

𝑘 ’s). However,

since distance to/from 𝑦left𝑖 and 𝑤left
𝑖 are infinite anyways, we can pair

(𝑥left𝑖 , 𝑦left𝑖 , 𝑤′left
𝑖 , 𝑦′left𝑗 , 𝑤left

𝑙 , 𝑧ℎ) (B.69)

for any 𝑖, 𝑗, 𝑙, ℎ, to obtain a left pattern.

• Among the right-pattern nodes, each set with the same subscript are bun-

dled together in the sense that 𝑥right𝑖 only has finite distance to 𝑦′right𝑖 , and

𝑦right𝑗 which only has finite distance to 𝑤right
𝑗 (instead of other 𝑦′right𝑗 ’s or

𝑤right
𝑘 ’s). However, since are distances are infinite anyways, we can pair

(𝑥right𝑖 , 𝑦′right𝑖 , 𝑦right𝑗 , 𝑤right
𝑗 , 𝑤′right

𝑙 , 𝑧ℎ) (B.70)

for any 𝑖, 𝑗, 𝑙, ℎ, to obtain a right pattern.

We can see that (𝒳 , 𝑑) indeed satisfies all quasimetric space requirements (Def-

inition 3.2.1), including triangle inequalities (e.g., by, for each (𝑎, 𝑏) with finite

distance 𝑑𝑛(𝑎, 𝑏) <∞, enumerating finite-length paths from 𝑎 to 𝑏).

Now consider the sampled training set 𝑆.
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• We say 𝑆 is bad on a left pattern specified by 𝑖left, 𝑗left, 𝑙left, ℎleft, if

𝑆 ⊃ {(𝑥left𝑖left
, 𝑧ℎleft), (𝑥

left
𝑖left
, 𝑦left𝑖left

), (𝑦left𝑖left
, 𝑤′left

𝑖left
), (𝑤left

𝑙left
, 𝑧ℎleft)} (B.71)

∅ = 𝑆 ∩ {(𝑦left𝑖left
, 𝑧ℎleft), (𝑦

left
𝑖left
, 𝑦left𝑖left

), (𝑤left
𝑙left
, 𝑤left

𝑙left
), (𝑦′left𝑗left

, 𝑦′left𝑗left
), (𝑤′left

𝑖left
, 𝑤′left

𝑖left
),

(𝑥left𝑖left
, 𝑤′left

𝑖left
), (𝑦left𝑖left

, 𝑦′left𝑗left
), (𝑤left

𝑙left
, 𝑤′left

𝑖left
), (𝑦′left𝑗left

, 𝑦left𝑖left
), (𝑤′left

𝑖left
, 𝑤left

𝑙left
)}

(B.72)

• We say 𝑆 is bad on a right pattern specified by 𝑖right, 𝑗right, 𝑙right, ℎright, if

𝑆 ⊃ {(𝑥right𝑖right
, 𝑧ℎright), (𝑥

right
𝑖right

, 𝑦′right𝑖right
), (𝑦′right𝑗right

, 𝑤right
𝑗right

), (𝑤right
𝑗right

, 𝑧ℎright)} (B.73)

∅ = 𝑆 ∩ {(𝑦right𝑗right
, 𝑧ℎright), (𝑦

right
𝑗right

, 𝑦right𝑗right
), (𝑤right

𝑗right
, 𝑤right

𝑗right
), (𝑦′right𝑖right

, 𝑦′right𝑖right
),

(𝑤′right
𝑙right

, 𝑤′right
𝑙right

), (𝑥right𝑖right
, 𝑤′right

𝑗right
), (𝑦right𝑗right

, 𝑦′right𝑖right
), (𝑤right

𝑗right
, 𝑤′right

𝑙right
),

(𝑦′right𝑖right
, 𝑦right𝑗right

), (𝑤′right
𝑙right

, 𝑤right
𝑗right

)} (B.74)

Most importantly,

• If 𝑆 is bad on a left pattern specified by 𝑖left, 𝑗left, 𝑙left, ℎleft, consider the

orthogonal transform that interchanges 𝑦left𝑖left
↔ 𝑦′left𝑗left

and 𝑤left
𝑙left

↔ 𝑤′left
𝑖left

on

2nd input. In 𝑆, the possible transformed pairs are

𝑑(𝑥left𝑖left
, 𝑦left𝑖left

) = 1 −→ 𝑑(𝑥left𝑖left
, 𝑦′left𝑗left

) = 1, (known in 𝑆)

𝑑(𝑦left𝑖left
, 𝑤′left

𝑖left
) = 1 −→ 𝑑(𝑦left𝑖left

, 𝑤left
𝑙left

) = 1, (known in 𝑆)

𝑑(𝑢, 𝑦left𝑖left
) = ∞ −→ 𝑑(𝑢, 𝑦′left𝑗left

) = ∞,

(poissble in 𝑆 for some 𝑢 ̸= 𝑥left𝑖left
)

𝑑(𝑢, 𝑦′left𝑗left
) = ∞ −→ 𝑑(𝑢, 𝑦left𝑖left

) = ∞, (poissble in 𝑆 for some 𝑢)

𝑑(𝑢,𝑤′left
𝑖left

) = ∞ −→ 𝑑(𝑢,𝑤left
𝑙left

) = ∞,

(poissble in 𝑆 for some 𝑢 /∈ {𝑥left𝑖left
, 𝑦left𝑖left

})

𝑑(𝑢,𝑤left
𝑙left

) = ∞ −→ 𝑑(𝑢,𝑤′left
𝑖left

) = ∞. (poissble in 𝑆 for some 𝑢)

The crucial observation is that the transformed training set just look like
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one sampled from a quasimetric space where

– the quasimetric space has one less set of left-pattern elements,

– the quasimetric space has one more set of right-pattern elements, and

– transformed training set is bad on that extra right pattern (given by

the extra set of right-pattern elements),

which can be easily verified by comparing the transformed training set

with the requirements in Equations (B.73) and (B.74).

• Similarly, if 𝑆 is bad on a right pattern specified by 𝑖right, 𝑗right, 𝑙right, ℎright,

consider the orthogonal transform that interchanges 𝑦right𝑗right
↔ 𝑦′right𝑖right

and

𝑤right
𝑗right

↔ 𝑤′right
𝑙right

on 2nd input. In 𝑆 the possible transformed pairs are

𝑑(𝑥right𝑖right
, 𝑦′right𝑖right

) = 1 −→ 𝑑(𝑥right𝑖right
, 𝑦right𝑗right

) = 1, (known in 𝑆)

𝑑(𝑦right𝑗right
, 𝑤right

𝑗right
) = 1 −→ 𝑑(𝑦right𝑗right

, 𝑤′right
𝑙right

) = 1, (known in 𝑆)

𝑑(𝑢, 𝑦right𝑗right
) = ∞ −→ 𝑑(𝑢, 𝑦′right𝑖right

) = ∞,

(poissble in 𝑆 for some 𝑢)

𝑑(𝑢, 𝑦′right𝑖right
) = ∞ −→ 𝑑(𝑢, 𝑦right𝑗right

) = ∞,

(poissble in 𝑆 for some 𝑢 ̸= 𝑥right𝑖right
)

𝑑(𝑢,𝑤′right
𝑙right

) = ∞ −→ 𝑑(𝑢,𝑤right
𝑗right

) = ∞,

(poissble in 𝑆 for some 𝑢)

𝑑(𝑢,𝑤right
𝑗right

) = ∞ −→ 𝑑(𝑢,𝑤′right
𝑙right

) = ∞.

(poissble in 𝑆 for some 𝑢 /∈ {𝑥right𝑖right
, 𝑦right𝑗right

})

Again, the crucial observation is that the transformed training set just look

like one sampled from a quasimetric space where

– the quasimetric space has one less set of right-pattern elements,

– the quasimetric space has one more set of left-pattern elements, and

– transformed training set is bad on that extra left pattern (given by the

extra set of left-pattern elements),
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which can be easily verified by comparing the transformed training set

with the requirements in Equations (B.71) and (B.72).

Therefore, when 𝑆 is bad on both a left pattern and a right pattern (necessarily on

disjoint sets of pairs), we consider the following orthogonal transform composed

of:

(a) both transforms specified above (which only transforms 2nd inputs),

(so that after this we obtain another possible training set of same size from

the quasimetric space that is only different up to some permutation of 𝒳 )

(b) a permutation of 𝒳 (on both inputs) so that the bad left-pattern nodes

and the bad right-pattern nodes exchange features,

This transforms gives another possible training set of same size from the same

quasimetric space, also is bad on a left pattern and a right pattern. Moreover,

with a particular way of select bad patterns (e.g., by the order of the subscripts),

this process is reversible. Therefore, we have defined a way to pair up all such

bad training sets.

Consider the predictors 𝑑before and 𝑑after trained on these two training sets (be-

fore and after transform) with an learning algorithm equivariant to orthogonal

transforms. Assuming that they satisfy non-negativity and Identity of Indis-

cernibles, we have,

• The predictors have the same distortion over respective training sets.

Therefore we denote this distortion as dis𝑆(𝑑) without specifying the pre-

dictor 𝑑 or training set 𝑆.

• the predictors must predict the same on heldout pairs in the sense that

𝑑before(𝑦
left
𝑖left
, 𝑧ℎleft) = 𝑑after(𝑦

right
𝑗right

, 𝑧ℎright) (B.75)

𝑑before(𝑦
right
𝑗right

, 𝑧ℎright) = 𝑑after(𝑦
left
𝑖left
, 𝑧ℎleft). (B.76)
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Focusing on the first, we denote

𝑑(𝑦, 𝑧) , 𝑑before(𝑦
left
𝑖left
, 𝑧ℎleft) = 𝑑after(𝑦

right
𝑗right

, 𝑧ℎright) (B.77)

without specifying the predictor 𝑑 or the specific 𝑦 and 𝑧.

However, the quasimetric constraints on heldout pairs (𝑦left𝑖left
, 𝑧ℎleft) and (𝑦right𝑗right

, 𝑧ℎright)

are completely different (see the left vs. right part of Figure B-1). Therefore, as

shown in Figure B-1, assuming non-negativity, one of the two predictors must

have total violation at least

vio(𝑑) ≥ max

(︃
𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝑑(𝑦, 𝑧)) ,

𝑑(𝑦, 𝑧)

2 · dis𝑆(𝑑)

)︃
. (B.78)

Fixing a large enough 𝑐, two terms in the max of Equation (B.78) can equal for

some 𝑑(𝑦, 𝑧), and are respectively decreasing and increasing in 𝑑(𝑦, 𝑧). In that

case, we have

vio(𝑑) ≥ 𝛿

2 · dis𝑆(𝑑)
, (B.79)

for 𝛿 > 0 such that

𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝛿)
=

𝛿

2 · dis𝑆(𝑑)
. (B.80)

Solving the above quadratic equation gives

𝛿 =
−dis𝑆(𝑑) +

√︁
dis𝑆(𝑑)2 + 8𝑐

2
, (B.81)

leading to

vio(𝑑) ≥
−1 +

√︁
1 + 8𝑐/dis𝑆(𝑑)2

4
. (B.82)
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Therefore, choosing 𝑐 ≥ 𝑓 2
𝑛(4𝑓𝑛 + 1)2 gives

dis𝑆(𝑑) ≤ 𝑓𝑛 (B.83)

=⇒ vio(𝑑) ≥
−1 +

√︁
1 + 8𝑐/dis𝑆(𝑑)2

4
(B.84)

≥
−1 +

√︀
1 + 8𝑓 2

𝑛(4𝑓𝑛 + 1)2/𝑓 2
𝑛

4
(B.85)

=
−1 +

√︀
1 + 8(4𝑓𝑛 + 1)2

4
(B.86)

≥ −1 + 4𝑓𝑛 + 1

4
(B.87)

= 𝑓𝑛. (B.88)

Hence, for training sets that are bad on both a left pattern and a right pattern,

we have shown a way to pair them up such that

• each pair of training sets have the same size, and

• the algorithm fail on one of each pair by producing a distance predictor

that

– has either distortion over training set ≥ 𝑓𝑛, or violation ≥ 𝑓𝑛, and

– has test MSE ≥ 𝑓𝑛.

Remark B.2.1. Note that all training sets of size 𝑚 has equal probability of

being sampled. Therefore, to prove the theorem, it suffices to show that with

probability 1− 𝑜(1), we can sample a training set of size 𝑚 that is bad on both

a left pattern and a right pattern.

2. Consider sampling training set as individually collecting each pair

with a certain probability 𝑝, and carefully analyze the conditions to

sample a training set with the special properties with high probability

1− 𝑜(1).

In probabilistic methods, it is often much easier to work with independent ran-

dom variables. Therefore, instead of considering uniform sampling a training set
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𝑆 of fixed size 𝑚, we consider including each pair in 𝑆 with probability 𝑝, cho-

sen independently. We will first show result based on this sampling procedure

via a second moment argument, and later extend to the case with a fixed-size

training set.

First, let’s define some notations that ignore constants:

𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = (1 + 𝑜(1))𝑔 (B.89)

𝑓 ≪ 𝑔 ⇐⇒ 𝑓 = 𝑜(𝑔). (B.90)

We start with stating a standard result from the second moment method (Alon

and Spencer, 2004).

Corollary B.2.2 (Corollary 4.3.5 of (Alon and Spencer, 2004)). Con-

sider random variable 𝑋 = 𝑋1+𝑋2+· · ·+𝑋𝑛, where 𝑋𝑖 is the indicator random

variable for event 𝐴𝑖. Write 𝑖 ∼ 𝑗 if 𝑖 ̸= 𝑗 and the pair of events (𝐴𝑖, 𝐴𝑗) are

not independent. Suppose the following quantity does not depend on 𝑖:

Δ* ,
∑︁
𝑗∼𝑖

P [𝐴𝑗 | 𝐴𝑖] . (B.91)

If E [𝑋] → ∞ and Δ* ≪ E [𝑋], then 𝑋 ∼ E [𝑋] with probability 1− 𝑜(1).

We will apply this corollary to obtain conditions on 𝑝 such that 𝑆 with prob-

ability 1 − 𝑜(1) is bad on some left pattern, and conditions such that 𝑆 with

probability 1 − 𝑜(1) is bad on some right pattern. A union bound would then

give the desired result.

• 𝑆 is bad on some left pattern.

Recall that a left pattern is specified by 𝑖left, 𝑗left, 𝑙left, ℎleft all ∈ [𝑘]:

(𝑥left𝑖left
, 𝑦left𝑖left

, 𝑤′left
𝑖left
, 𝑦′left𝑗left

, 𝑤left
𝑙left
, 𝑧ℎleft) (B.92)
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Therefore, we consider 𝑘4 = ( 𝑛
12
)4 events of the form

𝐴𝑖left,𝑗left,𝑙left,ℎleft , {𝑆 is bad on the left pattern at 𝑖left, 𝑗left, 𝑙left, ℎleft}.

(B.93)

Obviously, these events are symmetrical, and the Δ* in Equation (B.91)

does not depend on 𝑖.

By the quasimetric space construction and the requirement for 𝑆 to be

bad on a left pattern in Equations (B.71) and (B.72), we can see that

(𝑖left, 𝑗left, 𝑙left, ℎleft) ∼ (𝑖′left, 𝑗
′
left, 𝑙

′
left, ℎ

′
left) only if 𝑖left = 𝑖′left or 𝑗left = 𝑗′left or

𝑙left = 𝑙′left or ℎleft = ℎ′left.
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Therefore, we have

E [𝑋] ∼ 𝑛4𝑝4(1− 𝑝)10 (include 4 pairs & exclude 10 pairs)

Δ* ≪ 𝑛3𝑝4(1− 𝑝)9 (share 𝑗left)

+ 𝑛3𝑝2(1− 𝑝)7 (share 𝑖left)

+ 𝑛3𝑝4(1− 𝑝)9 (share 𝑙left)

+ 𝑛3𝑝4(1− 𝑝)10 (share ℎleft)

+ 𝑛2𝑝2(1− 𝑝)4 (share 𝑗left, 𝑖left)

+ 𝑛2𝑝4(1− 𝑝)8 (share 𝑗left, 𝑙left)

+ 𝑛2𝑝4(1− 𝑝)9 (share 𝑗left, ℎleft)

+ 𝑛2𝑝2(1− 𝑝)4 (share 𝑖left, 𝑙left)

+ 𝑛2𝑝(1− 𝑝)6 (share 𝑖left, ℎleft)

+ 𝑛2𝑝3(1− 𝑝)9 (share 𝑙left, ℎleft)

+ 𝑛(1− 𝑝)3 (share 𝑖left, 𝑙left, ℎleft)

+ 𝑛𝑝3(1− 𝑝)8 (share 𝑗left, 𝑙left, ℎleft)

+ 𝑛𝑝(1− 𝑝)3 (share 𝑗left, 𝑖left, ℎleft)

+ 𝑛𝑝2(1− 𝑝) (share 𝑗left, 𝑖left, 𝑙left)

∼ 𝑛3𝑝2(1− 𝑝)7 + 𝑛2(𝑝2(1− 𝑝)4 + 𝑝(1− 𝑝)6) (B.94)

+ 𝑛((1− 𝑝)3 + 𝑝2(1− 𝑝)). (B.95)

Therefore, to apply Corollary B.2.2, we need to have

𝑛4𝑝4(1− 𝑝)10 → ∞ (B.96)

𝑛3𝑝2(1− 𝑝)7 ≪ 𝑛4𝑝4(1− 𝑝)10 (B.97)

𝑛2(𝑝2(1− 𝑝)4 + 𝑝(1− 𝑝)6) ≪ 𝑛4𝑝4(1− 𝑝)10 (B.98)

𝑛((1− 𝑝)3 + 𝑝2(1− 𝑝)) ≪ 𝑛4𝑝4(1− 𝑝)10, (B.99)
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which gives

𝑝≫ 𝑛−1/2 (B.100)

1− 𝑝≫ 𝑛−1/3 (B.101)

as a sufficient condition to for 𝑆 to be bad on some left pattern with

probability 1− 𝑜(1).

• 𝑆 is bad on some right pattern.

Recall that a right pattern is specified by 𝑖right, 𝑗right, 𝑙right, ℎright all ∈ [𝑘]:

(𝑥right𝑖right
, 𝑦′right𝑖right

, 𝑦right𝑗right
, 𝑤right

𝑗right
, 𝑤′right

𝑙right
, 𝑧ℎright) (B.102)

Similarly, we consider 𝑘4 = ( 𝑛
12
)4 events of the form

𝐴𝑖right,𝑗right,𝑙right,ℎright , {𝑆 is bad on the left pattern at 𝑖right, 𝑗right, 𝑙right, ℎright}.

(B.103)

Again, these events are symmetrical, and Δ* in Equation (B.91) does not

depend on 𝑖.
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Similarly, we have

E [𝑋] ∼ 𝑛4𝑝4(1− 𝑝)10 (include 4 pairs & exclude 10 pairs)

Δ* ≪ 𝑛3𝑝3(1− 𝑝)9 (share 𝑖right)

+ 𝑛3𝑝3(1− 𝑝)8 (share 𝑗right)

+ 𝑛3𝑝4(1− 𝑝)10 (share ℎright)

+ 𝑛3𝑝4(1− 𝑝)9 (share 𝑙right)

+ 𝑛2𝑝2(1− 𝑝)4 (share 𝑖right, 𝑗right)

+ 𝑛2𝑝2(1− 𝑝)9 (share 𝑖right, ℎright)

+ 𝑛2𝑝3(1− 𝑝)8 (share 𝑖right, 𝑙right)

+ 𝑛2𝑝2(1− 𝑝)7 (share 𝑗right, ℎright)

+ 𝑛2𝑝3(1− 𝑝)5 (share 𝑗right, 𝑙right)

+ 𝑛2𝑝4(1− 𝑝)9 (share ℎright, 𝑙right)

+ 𝑛𝑝2(1− 𝑝)4 (share 𝑗right, ℎright, 𝑙right)

+ 𝑛𝑝2(1− 𝑝)8 (share 𝑖right, ℎright, 𝑙right)

+ 𝑛𝑝2(1− 𝑝) (share 𝑖right, 𝑗right, 𝑙right)

+ 𝑛(1− 𝑝) (share 𝑖right, 𝑗right, ℎright)

∼ 𝑛3𝑝3(1− 𝑝)8 + 𝑛2𝑝2(1− 𝑝)4 (B.104)

+ 𝑛(1− 𝑝). (B.105)

Therefore, to apply Corollary B.2.2, we need to have

𝑛4𝑝4(1− 𝑝)10 → ∞ (B.106)

𝑛3𝑝3(1− 𝑝)8 ≪ 𝑛4𝑝4(1− 𝑝)10 (B.107)

𝑛2𝑝2(1− 𝑝)4 ≪ 𝑛4𝑝4(1− 𝑝)10 (B.108)

𝑛(1− 𝑝) ≪ 𝑛4𝑝4(1− 𝑝)10, (B.109)
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which gives

𝑝≫ 𝑛−3/4 (B.110)

1− 𝑝≫ 𝑛−1/3 (B.111)

as a sufficient condition to for 𝑆 to be bad on some right pattern with

probability 1− 𝑜(1).

So, by union bound, as long as

𝑝≫ 𝑛−1/2 (B.112)

1− 𝑝≫ 𝑛−1/3, (B.113)

𝑆 is bad on some left pattern and some right pattern with probability 1− 𝑜(1).

3. Extend to fixed-size training sets and show that, under similar condi-

tions, we sample a training set with the special properties with high

probability 1− 𝑜(1).

To extend to fixed-size training sets, we consider the following alteration pro-

cedure:

(a) Sample training set 𝑆 by independently include each pair with probability

𝑝 , 𝑚+𝛿
𝑛2 , for some 𝛿 > 0.

(b) Show that with high probability 1−𝑜(1), we end up with [𝑚,𝑚+2𝛿] pairs

in 𝑆.

(c) Make sure that 𝑝 satisfy Equation (B.112) and Equation (B.113) so that 𝑆

is bad on some left pattern and some right pattern with high probability

1− 𝑜(1).

(d) Randomly discard the additional pairs, and show that with high probabil-

ity 1− 𝑜(1) this won’t affect that 𝑆 is bad on some left pattern and some

right pattern.
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We now consider each step in details:

(a) Sample training set 𝑆 by independently include each pair with

probability 𝑝 , 𝑚+𝛿
𝑛2 , for some 𝛿 > 0.

For 𝑝 , 𝑚+𝛿
𝑛2 , the number of pairs in the training set is distributed as

Binomial(𝑛2,
𝑚+ 𝛿

𝑛2
). (B.114)

(b) Show that with high probability 1−𝑜(1), we end up with [𝑚,𝑚+2𝛿]

pairs in 𝑆.

Standard Binomial concentration tells us that,

𝛿 ≫ 𝑛
√︀
𝑝(1− 𝑝) =⇒ P

[︂
Binomial(𝑛2,

𝑚+ 𝛿

𝑛2
) /∈ [𝑚,𝑚+ 2𝛿]

]︂
→ 0,

(B.115)

which can be satisfied if

𝛿 ≫ 𝑛. (B.116)

(c) Make sure that 𝑝 satisfy Equation (B.112) and Equation (B.113)

so that 𝑆 is bad on some left pattern and some right pattern with

high probability 1− 𝑜(1).

Therefore, we want

𝑚+ 𝛿

𝑛2
≫ 𝑛−1/2 (B.117)

1− 𝑚+ 𝛿

𝑛2
≫ 𝑛−1/3. (B.118)

(d) Randomly discard the additional pairs, and show that with high

probability 1 − 𝑜(1) this won’t affect that 𝑆 is bad on some left

pattern and some right pattern.

Consider any specific bad left pattern and a right pattern in 𝑆. It is

sufficient that we don’t break these two patterns during discarding.

Since we only discard pairs, it suffices to only consider the pairs we want
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to preserve, which are a total of 8 pairs across two patterns.

Each such pair is discarded the probability ≤ 2𝛿
𝑚

, since we remove at most

2𝛿 pairs. By union bound,

P [all 8 pairs are preserved] ≥ 1− 16𝛿

𝑚
. (B.119)

Hence, it suffices to make sure that

𝛿 ≪ 𝑚. (B.120)

Collecting all requirements, we have

𝛿 ≫ 𝑛 (B.121)
𝑚+ 𝛿

𝑛2
≫ 𝑛−1/2 (B.122)

1− 𝑚+ 𝛿

𝑛2
≫ 𝑛−1/3 (B.123)

𝛿 ≪ 𝑚. (B.124)

Assume that

𝑚

𝑛2
≫ 𝑛−1/2 (B.125)

1− 𝑚

𝑛2
≫ 𝑛−1/3. (B.126)

It can be easily verified that using 𝛿 , 𝑛1.1 satisfies all conditions.

Hence, for a uniformly randomly sampled training set 𝑆 with size 𝑚, 𝑆 is bad

on some left pattern and some right pattern with high probability 1− 𝑜(1), as

long as

𝑚

𝑛2
≫ 𝑛−1/2 (B.127)

1− 𝑚

𝑛2
≫ 𝑛−1/3. (B.128)
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This is exactly the condition we need to prove the theorem (see Remark B.2.1).

This concludes the proof.

Discussions

Training set size dependency. Intuitively, when the training set has almost all

pairs, violation can be lowered by simply fitting training set well; when it is small

and sparse, the learning algorithm may have an easier job finding some consistent

quasimetric. Theorem 3.4.6 shows that, outside these two cases, algorithms equivariant

to orthogonal transforms can fail. Note that for the latter case, Theorem 3.4.6 requires

the training fraction to decrease slower than 𝑛−1/2, which rules out training sizes that is

linear in 𝑛. We leave improving this result as future work. Nonetheless, Theorem 3.4.6

still covers common scenarios such as a fixed fraction of all pairs, and highlights that

a training-data-agnostic result (such as the ones for PQEs) is not possible for these

algorithms.

Proof techniques. In embedding theory, it is quite standard to analyze quasimet-

rics as directed graphs due to their lack of nice metric structure. In the proof for

Theorem 3.4.6, we used abundant techniques from the probabilistic method, which

are commonly used for analyzing graph properties in the asymptotic case, including

Corollary B.2.2 from the second moment technique, and the alteration technique to

extend to fixed-size training sets. While such techniques may be new in learning

theory, they are standard for characterizing asymptotic probabilities on graphs, which

quasimetrics are often analyzed as (Charikar et al., 2006; Mémoli et al., 2018).

To provide more intuition on why these techniques are useful here, we note that the

construction of a training set of pairs is essentially like constructing an Erdős-Rényi

random graph on 𝑛2 vertices. Erdős-Rényi (undirected) random graphs come in two

kinds:

• Uniformly sampling a fixed number of 𝑚 edges;

• Adding an edge between each pair with probability 𝑝, decided independently.
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The latter, due to its independent decisions, is often much easy to analyze and preferred

by many. The alteration technique (that we used in the proof) is also a standard way

to transfer a result on a random graph of the latter type, to a random graph of the

former type (Bollobás and Béla, 2001). Readers can refer to (Alon and Spencer, 2004;

Bollobás and Béla, 2001; Erdős and Rényi, 1959) for more in-depth treatment of these

topics.

Generalization to other transforms. The core of this construction only relies

on the ability to swap (concatenated) inputs between (𝑥, 𝑦) ↔ (𝑥, 𝑦′) and between

(𝑦, 𝑤) ↔ (𝑦, 𝑤′) via a transform. For instance, here the orthogonal transforms satisfy

this requirement on one-hot features. Therefore, the result can also be generalized to

other transforms and features with the same property. Our stated theorem focuses on

orthogonal transforms because they correspond to several common learning algorithms

(see Lemma 3.4.5). If a learning algorithm is equivariant to some other transform

family, it would be meaningful to generalize this result to that transform family, and

obtain a similar negative result. We leave such extensions as future work.

Corollary of Distortion and Violation for Unconstrained MLPs

Corollary B.2.3 (Distortion and Violation of Unconstrained MLPs). Let

(𝑓𝑛)𝑛 be an arbitrary sequence of desired violation values. There is an infinite collec-

tion of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛=1,2,... with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that MLP

trained with squared loss in NTK regime converges to a function 𝑑 that either

• fails non-negativity, or

• vio(𝑑) ≥ 𝑓𝑛,
with probability 1/2 − 𝑜(1) over the random training set 𝑆 of size 𝑚, as long as 𝑆

does not contain almost all pairs 1−𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few

pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Proof of Corollary B.2.3. This follows directly from Theorem 3.4.6 and standard NTK

convergence results obtained from the kernel regression optimality and the positive-

definiteness of the NTK. In particular, Proposition 2 of (Jacot et al., 2018) claims

253



0 200 400 600 800 1000
c

0

1

2

3

4

5

6 1e 8
Training MSE for MLPs trained on the left pattern
Training MSE for MLPs trained on the right pattern

(a) Training losses for varying 𝑐. Note the scale
of the vertical axis.
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(b) Prediction on heldout pair 𝑑(𝑦, 𝑧) for varying
𝑐.

Figure B-2: Training unconstrained MLPs on the toy failure construction discussed in
Section 3.4.2 (reproduced as Figure B-1). Two patterns in the construction have different
constraints on distance of the heldout pair (𝑦, 𝑧). Plots show mean and standard deviations
over 5 runs. Left: All training conclude with small training error. Right: Trained MLPs
predict identically for both patterns. Here standard deviation is small compared to mean
and thus not very visible.

that the NTK is positive-definite when restricted to a hypersphere. Since the con-

struction in proof of Theorem 3.4.6 uses one-hot features, the input (concatenation of

two features) lie on the hypersphere with radius
√
2. Hence, the NTK is guaranteed

positive definite.

Empirical Verification of the Failure Construction

We train unconstrained MLPs on the toy failure construction discussed in Section 3.4.2

(reproduced as Figure B-1). The MLP uses 12-1024-1 architecture with ReLU acti-

vations, takes in the concatenated one-hot features, and directly outputs predicted

distances. Varying 𝑐 ∈ {1, 10, 100, 1000}, we train the above MLP 5 times on each of

the two patterns in Figure B-1, by regressing towards the training distances via MSE

loss.

In Figure B-2, we can see that all training runs conclude with small training error,

and indeed the trained MLPs predict very similarly on the heldout pair, regardless

whether it is trained on the left or right pattern of Figure B-1, which restricts the

heldout pair distance differently.

This verifies our theory (Theorem 3.4.6 and Corollary B.2.3) that algorithms equiv-
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<latexit sha1_base64="SR80GvteEkahOgNRpYqC43fc0gs="></latexit> Perturb
u æ u+ ”

<latexit sha1_base64="4LUp5/sFvdjBEUkf07rJbxtgk50="></latexit>

(R(u), R(u + ”)) has bounded density on R2

=∆ P[R(u) = R(u + ”)] = 0
<latexit sha1_base64="y5w5D7fW4btDnQ1M52di62+LgKY="></latexit>

P[R(u) = R(u)] = 1

(a) Continuous-valued stochastic process.

<latexit sha1_base64="SR80GvteEkahOgNRpYqC43fc0gs="></latexit> Perturb
u æ u+ ”

<latexit sha1_base64="y5w5D7fW4btDnQ1M52di62+LgKY="></latexit>

P[R(u) = R(u)] = 1
<latexit sha1_base64="IuEMZgmqClAqT9+SxX9BZhdpdj4=">AAACjnicjVFdSxtBFJ1sbf3oV7SPvgzGQqQYdotfFKRCX+xDwYpRIRvC7OyNGZwvZu6IYdnf1F/Th77Uv+Ik5qFqBS8MHM45l3Pn3sJK4TFN/zSSF3MvX80vLC69fvP23fvm8sqpN8Fx6HIjjTsvmAcpNHRRoIRz64CpQsJZcfltop9dgfPC6BMcW+grdqHFUHCGkRo0v+cI1xhslYOyo+qH8VhT60zBCiEFjqlHISU1mq4ft8PG/nG7yqeplYOyDp/yEiSyemO9HjRbaSedFn0MshlokVkdDZYbm3lpeFCgkUvmfS9LLfYr5lBwCfVSHjxYxi/ZBfQi1EyB71fT9Jp+jExJh8bFp5FO2X87quvnGpnyfqyK6FQMR/6hNiGf0nCk/if1Ag73+pXQNiBofjfDMEiKhk6OQEvhgKMcR8C4E/G/lI+YYxzjqe6FeK+lih7jJwvOHq7zMTj93Mm2O+nPrdbBl9mqF8gqWSNtkpFdckAOyRHpEk5+kd/kL7lJmslOsp98vbMmjVnPB3KvksNbn73K9g==</latexit>

Most probability still on R(u) = R(u+ ”)

(b) Discrete-valued stochastic process.

Figure B-3: Bivariate distributions from different stochastic processes. Left: In a continuous-
valued process (where (𝑁𝜃, 𝑁𝜃′) has bounded density if 𝜃 ̸= 𝜃′), perturbing one 𝜃 → 𝜃 + 𝜖
leaves P [𝑁𝜃 = 𝑁𝜃+𝜖] = 0. Then one of P

[︀
𝑁𝜃 ≤ 𝑁𝜃+𝜖

]︀
and P

[︀
𝑁𝜃+𝜖 ≤ 𝑁𝜃

]︀
must be far

away from 1 (as they sum to 1), breaking differentiability at either P [𝑁𝜃 ≤ 𝑁𝜃] = 1 or
P [𝑁𝜃+𝜖 ≤ 𝑁𝜃+𝜖] = 1. Right: For discrete-valued processes, most probability can still be left
on 𝑁𝜃 = 𝑁𝜃+𝜖 and thus do not break differentiability.

ariant to orthogonal transforms (including MLPs in NTK regime) cannot distinguish

these two cases and thus must fail on one of them.

B.3 Proofs and Discussions for Section 3.5: Poisson

Quasimetric Embeddings (PQEs)

B.3.1 Non-differentiability of Continuous-Valued Stochastic Pro-

cesses

In this section we formalize the argument presented in Section 3.5.3 to show why

continuous-valued stochastic processes lead to non-differentiability. Figure B-3 also

provides a graphical illustration of the general idea.

Proposition B.3.1 (Quasimetric Embeddings with Continuous-Valued Stochas-

tic Processes are not Differentiable). Consider any R𝑘-valued stochastic process

{𝑅(𝑢)}𝑢∈R𝑑 such that 𝑢 ̸= 𝑢′ =⇒ P [𝑅(𝑢) = 𝑅(𝑢′)] < 𝑐 for some universal constant

𝑐 < 1. Then P [𝑅(𝑢) ≤ 𝑅(𝑢′)] is not differentiable at any 𝑢 = 𝑢′.

Proof of Proposition B.3.1. Assume that the quantity is differentiable. Then it must

be continuous in 𝑢 and 𝑣.

We will use the (𝜖, 𝛿)-definition of continuity.
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At any 𝑢 ∈ R𝑑, consider small 𝜖 ∈ (0, 1−𝑐
3
). By continuity, since

P [𝑅(𝑢) ≤ 𝑅(𝑢)] = P [𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢+ 𝛿)] = 1 (B.129)

we can find 𝜖 ∈ R𝑑 such that

P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] ≥ 1− 𝜖 (B.130)

P [𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢)] ≥ 1− 𝜖. (B.131)

However, by assumption, P [𝑅(𝑢) = 𝑅(𝑢+ 𝛿)] < 𝑐. Therefore,

P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] ≥ 1− 𝜖 (B.132)

P [𝑅(𝑢+ 𝛿) < 𝑅(𝑢)] ≥ 1− 𝜖− 𝑐, (B.133)

which implies

1 = P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] + P [𝑅(𝑢+ 𝛿) < 𝑅(𝑢)] ≥ 2− 2𝜖− 𝑐 ≥ 5

3
− 2

3
𝑐 > 1. (B.134)

By contradiction, the quantity must not be differentiable at any 𝑢 = 𝑢′.

B.3.2 PQE-GG: Gaussian-based Measure and Gaussian Shapes

In Section 3.5.1, we presented the following PQE-LH formulation for Lebesgue measures

and half-lines:

𝑑PQE-LH
𝑧 (𝑢, 𝑣) ,

∑︁
𝑖

𝛼𝑖 ·
(︁
1− exp

(︀
−
∑︁
𝑗

(𝑢𝑖,𝑗 − 𝑣𝑖,𝑗)
+
)︀)︁
. (3.10)

Here, 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 receive zero gradient when 𝑢𝑖,𝑗 ≤ 𝑣𝑖,𝑗.

Gaussian shapes parametrization. We therefore consider a set parametrization

where no one set is entirely contained in a different set— the regions regions ⊂ R2

between an axis and a 1D Gaussian density function of fixed variance 𝜎2
shape = 1. That
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is, for each given 𝑢 ∈ 𝑅, we consider sets

𝐴𝒩 (𝜇) , {(𝑎, 𝑏) : 𝑏 ∈ [0, 𝑓𝒩 (𝑎;𝜇, 1)]}, (B.135)

where 𝑓𝒩 (𝑏;𝜇, 𝜎2) denotes the density of 1D Gaussian 𝒩 (𝜇, 𝜎2) with mean 𝜇 and

variance 𝜎2 evaluated at 𝑏. Since the Gaussian density function have unbounded

support, these sets, which are translated versions of each other, never have one set fully

contained in another. For latent 𝑢 ∈ Rℎ×𝑘 reshaped as 2D, our set parametrizations

are,

𝑢→ 𝐴𝑖,𝑗(𝑢) , 𝐴𝒩 (𝑢𝑖,𝑗), 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.136)

A Gaussian-based measure. These subsets of R2 always have Lebesgue measure

1, which would make PQE symmetrical (if used with a (scaled) Lebesgue measure).

Thus, we use an alternative R2 measure given by the product of a R Lebesgue measure

on the 𝑏-dimension (i.e., dimension of the function value of the Gaussian density)

and a R Gaussian measure on the 𝑎-dimension (i.e., dimension on the input of the

Gaussian density) centered at 0 with learnable variances (𝜎2
measure)𝑖,𝑗. To avoid being

constrained by the bounded total measure of 1, we also optimize learnable positive

scales 𝑐𝑖,𝑗 > 0. Hence, the each Poisson process has a mean measure as the product

of a R Lebesgue measure and a R Gaussian with learnable standard deviation, then

scaled with a learnable scale.

Note that the Gaussian measure should not be confused with the Gaussian shape.

Their parameters also are fully independent with one another.

Computing measures of Gaussian shapes and their intersections. The in-

tersection of two such Gaussian shapes is formed by two Gaussian tail shapes, reflected

around the middle point of the two Gaussian means (since they have the same standard

deviation 𝜎shape = 1). Hence, it is sufficient to describe how to integrate a Gaussian

density on a Gaussian measure over an interval. Applying this with different intervals

would give the measure of the intersection, and the measures of the two Gaussian

shapes. Omit indices 𝑖, 𝑗 for clarity. Formally, we integrate the Gaussian density
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𝑓𝒩 (𝑎;𝑢, 𝜎2
shape) over the centered Gaussian measure with variance 𝜎2

measure, which has

density 𝑓𝒩 (𝑎; 0, 𝜎2
measure):∫︁

𝑐 · 𝑓𝒩 (𝑎;𝑢, 𝜎2
shape)𝑓𝒩 (𝑎; 0, 𝜎2

measure) d𝑎, (B.137)

which is also another Gaussian integral (e.g., considered as integrating the product

measure along the a line of the form 𝑦 = 𝑥+𝑢). After standard algebraic manipulations

(omitted here), we obtain

∫︁
𝑐 · 𝑓𝒩 (𝑎;𝑢, 𝜎2

shape)𝑓𝒩 (𝑎; 0, 𝜎2
measure) d𝑎 (B.138)

=
𝑐 · exp (−𝑢2/𝜎2

total)√︀
2𝜋𝜎2

total

∫︁
𝑓𝒩

(︂
𝑎;𝑢

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎, (B.139)

for

𝜎2
total , 𝜎2

shape + 𝜎2
measure. (B.140)

This can be easily evaluated using statistical computing packages that supports

computing the error function and/or Gaussian CDF. Moreover, this final form is also

readily differentiable with standard gradient formulas. To summarize,

• each set 𝐴(𝑢) has total measure

𝑐√︀
2𝜋𝜎2

total

exp
(︀
−𝑢2/𝜎2

total

)︀
; (B.141)

• the intersection of 𝐴(𝑣) and 𝐴(𝑢2), for 𝑣 ≤ 𝑢2 has measure

𝑐 · exp (−𝑢22/𝜎2
total)√︀

2𝜋𝜎2
total

∫︁ 𝑣+𝑢2
2

−∞
𝑓𝒩

(︂
𝑎;𝑢2

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎 (B.142)

+
𝑐 · exp (−𝑣2/𝜎2

total)√︀
2𝜋𝜎2

total

∫︁ +∞

𝑣+𝑢2
2

𝑓𝒩

(︂
𝑎; 𝑣

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎. (B.143)

Interpretation and representing any total order. Consider two Gaussian

shapes 𝐴(𝑣) and 𝐴(𝑢2). Note that the Gaussian-based measure 𝜇Gaussian is symmetric
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around and centered at 0. Therefore,

|𝑣| < |𝑢2| =⇒ 𝜇Gaussian(𝐴(𝑣)) > 𝜇Gaussian(𝐴(𝑢2)) (B.144)

=⇒ 𝜇Gaussian(𝐴(𝑣) ∖ 𝐴(𝑢2)) > 𝜇Gaussian(𝐴(𝑢2) ∖ 𝐴(𝑣)). (B.145)

Moreover, scaling the rates of a Poisson makes it more concentrated (as a Poisson’s

mean grows as the square of its standard deviation) so that lim𝑐→∞ P [Pois(𝑐𝜇1) ≤ Pois(𝑐𝜇2)] =

1𝜇1<𝜇2 for 𝜇1 ̸= 𝜇2. Then any total order can be represented as the limit of a Poisson

process with Gaussian shapes, with the shapes’ having their means arranged according

to the total order, as the scale on the Gaussian-based measure grows to infinity.

B.3.3 Theoretical Guarantees for PQEs

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of

Section 3.4, any quasimetric space with size 𝑛 and treewidth 𝑡 admits a PQE-LH and

a PQE-GG with distortion 𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder

(e.g., a ReLU network with ≥ 3 layers and polynomial width).

In Section 3.5.4, we presented the above theoretical distortion and violation

guarantees for PQE-LH and PQE-GG. Furthermore, we commented that the same

guarantees apply to more generally to PQEs satisfying a mild condition. Here, we first

precisely describe this condition, show that PQE-LH and PQE-GG do satisfy it, state

and prove the general result, and then show the above as a straightforward corollary.

The Concentration Property

Recall that PQEs are generally defined with measures 𝜇 and set parametrizations 𝐴

as

𝑑PQE
𝑧 (𝑢, 𝑣;𝜇,𝐴, 𝛼) ,

∑︁
𝑖

𝛼𝑖 · E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[𝜋𝑧(𝑢, 𝑣)] , (3.14)

where

E𝜋𝑧∼ΠPQE
𝑧 (𝜇,𝐴)[𝜋𝑧(𝑢, 𝑣)] , 1−

∏︁
𝑗

P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] . (3.13)

259



Because the measures 𝜇 and set parametrizations 𝐴 themselves may have parame-

ters (e.g., as in PQE-GG), we consider them as classes of PQEs. E.g., PQE-GG is

a class of PQEs such that the 𝜇 is the specific Gaussian-based form, and 𝐴 is the

specific Guassian-shape.

Definition B.3.2 (Concetration Property of PQEs). Consider a PQE class with

ℎ mixtures of quasipartition distributions, each from 𝑘 Poisson processes. We say

that it has concentration property if it satisfies the following. Consider any finite

subset of 𝒳 ′ ⊂ 𝒳 , and arbitrary function 𝑔 : 𝒳 → Rℎ×𝑘. There exists a sequence of

((𝑓 (𝑛), 𝜇(𝑛), 𝐴(𝑛))𝑛 such that

• 𝑓 (𝑛) : 𝒳 ′ → R𝑑,

• 𝜇(𝑛), 𝐴(𝑛) are valid members of this PQE,

• E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[︀
𝜋𝑧(𝑓

(𝑛)(𝑥′), 𝑓 (𝑛)(𝑦′))
]︀

uniformly converges to 1−
∏︀

𝑗 1𝑔(𝑥)𝑖,𝑗≤𝑔(𝑦)𝑖,𝑗 ,

over all mixtures 𝑖 and pairs 𝑥, 𝑦 ∈ 𝒳 ′.

A sufficient condition. It suffices to make the probabilities

(𝑥, 𝑦, 𝑖, 𝑗) → P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] , (B.146)

along some PQE sequence uniformly converge to the indicators

(𝑥, 𝑦, 𝑖, 𝑗) → 1𝑔(𝑥′)𝑖,𝑗≤𝑔(𝑦′)𝑖,𝑗 . (B.147)

This is sufficient since product of bounded functions is uniformly convergent, if

each function is. Both statements below together form a sufficient condition for

Equation (B.146) to uniformly converge to Equation (B.147):

1. For any 𝑔, there exists a specific PQE of this class satisfying

• Measures (of set differences) are consistent with 𝑔 with some margin 𝜖 > 0:
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∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 ′, 𝑦 ∈ 𝒳 ′,

𝑔(𝑥)𝑖,𝑗 < 𝑔(𝑦)𝑖,𝑗

⇐⇒ 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) + 𝜖 < 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥)))

𝑔(𝑥)𝑖,𝑗 = 𝑔(𝑦)𝑖,𝑗

⇐⇒ 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) = 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥))) = 0.

• Either of the following:

– One side must be zero: ∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒳 ,

(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦)))) (𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥)))) = 0,

(B.148)

– Max measure is bounded by some constant 𝑐 > 0:

max
𝑥,𝑦,𝑖,𝑗

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) ≤ 𝑐. (B.149)

2. For any given specific PQE of this class, for any positive scale 𝑑 > 0, there is

another PQE (with same formulation) whose measures (of set differences) equal

exactly those of the given PQE scaled by 𝑑.

We now show that this is a sufficient condition. Note that a Poisson distribution has

standard deviation equal to square root of its mean. This means that as we scale the

rate of a Poisson, it becomes more concentrated. Applying to Poisson race probability,

we have, for 0 ≤ 𝜇1 + 𝜖 < 𝜇2,
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• one direction of Poisson race probability:

P [Pois(𝑑 · 𝜇1) ≤ Pois(𝑑 · 𝜇2)] (B.150)

≥ P [|Pois(𝑑 · 𝜇2)− Pois(𝑑 · 𝜇1)− 𝑑(𝜇2 − 𝜇1)| ≤ 𝑑(𝜇2 − 𝜇1)] (B.151)

≥ 1− 𝜇1 + 𝜇2

𝑑(𝜇2 − 𝜇1)2
(B.152)

≥

⎧⎪⎨⎪⎩1− 2
𝑑𝜖

if 𝜇1 = 0

1− 2𝑐
𝑑𝜖2

if 𝜇2 < 𝑐;

(B.153)

• the other direction of Poisson race probability:

P [Pois(𝑑 · 𝜇2) ≤ Pois(𝑑 · 𝜇1)] (B.154)

≤ P [|Pois(𝑑 · 𝜇2)− Pois(𝑑 · 𝜇1)− 𝑑(𝜇2 − 𝜇1)| ≥ 𝑑(𝜇2 − 𝜇1)] (B.155)

≤ 𝜇1 + 𝜇2

𝑑(𝜇2 − 𝜇1)2
(B.156)

≤

⎧⎪⎨⎪⎩
2
𝑑𝜖

if 𝜇1 = 0

2𝑐
𝑑𝜖2

if 𝜇2 < 𝑐.

(B.157)

Therefore, applying to scaled versions of the PQE from Item 1 above, we have

thus obtained the desired sequence, where Equation (B.146) uniformly converges to

Equation (B.147) with rate 𝒪(1/𝑑).

Lemma B.3.3. PQE-LH and PQE-GG both have the concentration property.

Proof of Lemma B.3.3. We show that both classes satisfy the above sufficient condi-

tion.

• PQE-LH: Lebesgue measure 𝜆 and half-lines.

WLOG, since 𝒳 is countable, we assume that 𝑔 satisfies

𝑔(𝑥)𝑖,𝑗 ̸= 𝑔(𝑦)𝑖,𝑗 =⇒ |𝑔(𝑥)𝑖,𝑗 − 𝑔(𝑦)𝑖,𝑗| > 1, ∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 ′, 𝑦 ∈ 𝒳 ′.

(B.158)
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The encoder in Item 1 above 𝑓 : 𝒳 → Rℎ×𝑘 can simply be 𝑔. We then have

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦))∖𝐴𝑖,𝑗(𝑓(𝑥))) = Leb((−∞, 𝑔(𝑦)]∖(−∞, 𝑔(𝑥)]) = (𝑔(𝑦)𝑖,𝑗−𝑔(𝑥)𝑖,𝑗)+.

(B.159)

This ensures that one side is always zero. Furthermore, scaling can be done by

simply scaling the encoder 𝑓 . Hence, PQE-LH satisfies this constraint.

• PQE-GG: Gaussian-based measure and Gaussian shapes (see Appendix B.3.2).

Because 𝒳 ′ is finit, we can have positive constant margin for the PQE require-

ments in Item 1. (Infinite 𝒳 ′ does not work because the total measure is finite

(for a specific PQE-GG with specific values of the scaling).) Concretely, we

satisfy both requirements via

– in descending order of 𝑔(·)𝑖,𝑗 we assign Gaussian shapes increasingly further

from the origin;

– scaling comes from that we allow scaling the Gaussian-based measure.

Hence, PQE-GG satisfies this constraint for finite 𝒳 .

A General Statement

We now state the general theorem for PQEs with the above concentration property.

Theorem B.3.4 (Distortion and violation of PQEs (General)). Consider any

PQE class with the concentration property. Under the assumptions of Section 3.4,

any quasimetric space with size 𝑛 and treewidth 𝑡 admits such a PQE with distortion

𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder (e.g., a ReLU network with

≥ 3 hidden layers, 𝒪(𝑛) hidden width, and 𝒪(𝑛2) quasipartition distributions, each

with 𝒪(𝑛) Poisson processes.).

Before proving this more general theorem, let us extend a result from Mémoli et al.

(2018).
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Lemma B.3.5 (Quasimetric Embeddings with Low Distortion; Adapted

from Corollary 2 in Mémoli et al. (2018)). Let 𝑀 = (𝑋, 𝑑) be a quasipseu-

dometric space with treewidth 𝑡, and 𝑛 = |𝑋|. Then 𝑀 admits an embedding into

a convex combination (i.e., scaled mixture) of 𝒪(𝑛2) quasipartitions with distortion

𝒪(𝑡 log2 𝑛).

Proof of Lemma B.3.5. The distortion bound is proved in Corollary 2 in (Mémoli

et al., 2018), which states that any quasipseudometric space with 𝑛 elements and 𝑡

treewidth admits an embedding into a convex combination of quasipartitions with

distortion 𝒪(𝑡 log2 𝑛).

To see that 𝑛2 quasipartitions suffice, we scrutinize their construction of quasipar-

titions in Algorithm 2 of (Mémoli et al., 2018), reproduced below as Algorithm 2.

Algorithm 2 Random quasipartition of a graph with bounded treewidth. Algo-
rithm 2 of (Mémoli et al., 2018).
Input: A digraph 𝐺 of treewidth 𝑡, a hierarchical tree of separators of 𝐺 (𝐻, 𝑓) with width

𝑡, and 𝑟 > 0.

Output: A random 𝑟-bounded quasipartition 𝑅.

Initialization: Set 𝐺* = 𝐺, 𝐻* = 𝐻 and 𝑅 = 𝐸(𝐺). Perform the following recursive

algorithm on 𝐺* and 𝐻*.

Step 1. Pick 𝑧 ∈ [0, 𝑟/2] uniformly at random.

Step 2. If |𝑉 (𝐺*)| ≤ 1,terminate the current recursive call. Otherwise pick the set

of vertices 𝐾 = 𝐺*. Let 𝐻1, . . . ,𝐻𝑚 be the sub-trees of 𝐻* below root(𝐻*) that are

hierarchical trees of separators of 𝐶1, . . . , 𝐶𝑚 respectively.

Step 3. For all (𝑢, 𝑣) ∈ 𝐸(𝐺*) remove (𝑢, 𝑣) from 𝑅 if one of the following holds:

(a) 𝑑𝐺(𝑢, 𝑥) > 𝑧 and 𝑑𝐺(𝑣, 𝑥) ≤ 𝑧 for some vertex 𝑥 ∈ 𝐾.

(b) 𝑑𝐺(𝑥, 𝑣) > 𝑧 and 𝑑𝐺(𝑥, 𝑢) ≤ 𝑧 for some vertex 𝑥 ∈ 𝐾.

Step 4. For all 𝑖 ∈ {1, . . . ,𝑚} perform a recursive call of Steps 2-4 setting 𝐺* = 𝐺*[𝐶𝑖]

and 𝐻* = 𝐻𝑖.

Step 5. Once all branches of the recursive terminate, enforce transitivity on 𝑅: For all

𝑢, 𝑣, 𝑤 ∈ 𝑉 (𝐺) if (𝑢, 𝑣) ∈ 𝑅 and (𝑣, 𝑤) ∈ 𝑅, add (𝑢,𝑤) to 𝑅.
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Many concepts used in Algorithm 2 are not relevant for our purpose (e.g., 𝑟-

bounded quasipartition). Importantly, we observe that for a given quasimetric space,

the produced quasipartition is entirely determined by the random choice of 𝑧 in Step 1,

which is only used to compare with distance values between node pairs. Note that

there are 𝑛2 node pairs, whose minimum distance is exactly 0 (i.e., distance from a

node to itself). Since 𝑧 ≥ 0, there are at most 𝑛2 choices of 𝑧 that lead to at most 𝑛2

different quasipartitions, for all possible values of 𝑟.

The construction used to prove Corollary 2 of (Mémoli et al., 2018) uses exactly

quasipartitions given by this algorithm. Therefore, the lemma is proved.

Lemma B.3.5 essentially proves the first half of Theorem B.3.4. Before proving

the full Theorem B.3.4, we restate the following result from (Hiraguchi, 1951), which

gives us a bound on how many total orders are needed to represent a general partial

order (i.e., quasipartition).

Theorem B.3.6 (Hiraguchi’s Theorem (Hiraguchi, 1951; Bogart, 1973)).

Let (𝑋,𝑃 ) be a partially ordered set such that |𝑋| ≥ 4. Then there exists a mapping

𝑓 : 𝑋 → R⌊|𝑋|/2⌋ such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑥𝑃𝑦 ⇐⇒ 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise . (B.160)

Proof of Theorem B.3.4. It immediately follows from Lemma B.3.5 and Theorem B.3.6

that any quasimetric space with 𝑛 elements and treewidth 𝑡 admits an embedding

with distortion 𝒪(𝑡 log2 𝑛) into a convex combination of 𝑛2 quasipartitions, each rep-

resented with an intersection of 𝒪(𝑛) total orders.

Because the PQE class has concentration property, for any finite quasimetric

space, we can simply select a PQE that is close enough to the desired convex com-

bination of 𝑛2 quasipartitions, to obtain distortion 𝒪(𝑡 log2 𝑛). Since each Poisson

process in PQE takes a constant number of latent dimensions, we can have such a

PQE with 𝒪(𝑛3)-dimensional latents and 𝑛2 quasipartition distributions.

It remains only to prove that we can compute such required latents using the

described architecture.
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Consider any 𝑥 ∈ 𝒳 ⊂ R𝑑. Since 𝒳 is finite, we can always find direction 𝑢𝑥 ∈ R𝑑

such that ∀𝑦 ∈ 𝒳 ∖ {𝑥}, 𝑦T𝑢𝑥 ̸= 𝑥T𝑢𝑥. That is, 𝑥 has a unique projection onto 𝑢𝑥.

Therefore, we can have 𝑐, 𝑏+, 𝑏− ∈ R such that

𝑐 · 𝑢T𝑥𝑥+ 𝑏+ = 1 (B.161)

−𝑐 · 𝑢T𝑥𝑥+ 𝑏− = 1, (B.162)

but for 𝑦 ∈ 𝒳 ∖ {𝑥}, we have, for some 𝑎 > 0, either

𝑐 · 𝑢T𝑥𝑦 + 𝑏+ = −𝑎 (B.163)

−𝑐 · 𝑢T𝑥𝑦 + 𝑏− = 𝑎+ 2, (B.164)

or

𝑐 · 𝑢T𝑥𝑦 + 𝑏+ = 𝑎+ 2 (B.165)

−𝑐 · 𝑢T𝑥𝑦 + 𝑏− = −𝑎. (B.166)

Then, consider computing two of the first layer features as, on input 𝑧,

[ReLU(𝑐 · 𝑢T𝑥𝑧 + 𝑏+) ReLU(−𝑐 · 𝑢T𝑥𝑧 + 𝑏−)], (B.167)

which, if 𝑧 = 𝑥, is [1, 1]; if 𝑧 ̸= 𝑥, is either [0, 2 + 𝑎] or [2 + 𝑎, 0], for some 𝑎 > 0.

Then, one of the second layer features may sum these two features and threshold

it properly would single out 𝑥, i.e., activate only when input is 𝑥.

After doing this for all 𝑥 ∈ 𝒳 , we obtain an 𝑛-dimensional second layer feature

space that is just one-hot features.

The third layer can then just be a simple embedding look up, able to represent

any embedding, including the one allowing a PQE to have distortion 𝒪(𝑡 log 𝑛), as

described above.

Because quasimetric embeddings naturally have violation 1, this concludes the

proof.
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Proof of Theorem 3.5.2: Distortion and violation of PQEs

Proof of Theorem 3.5.2. Lemma B.3.3 and Theorem B.3.4 imply the result. To see

that polynomial width is sufficient, note that the hidden width are polynomial by

Theorem B.3.4, and that the embedding dimensions needed to represent each of the

𝒪(𝑛3) Poisson processes is constant 1 in both PQE-LH and PQE-GG. Hence the

latent space is also polynomial. This concludes the result.

Discussions

Dependency on log 𝑛. log 𝑛 dependency frequently occurs in distortion results.

Perhaps the most well-known ones are Bourgain’s Embedding Theorem (Bourgain,

1985) and the Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984),

which concern metric embeddings into Euclidean spaces.

Dependency on treewidth 𝑡. Treewidth 𝑡 here works as a complexity measure of

the quasimetric. We will use a simple example to illustrate why low-treewidth is easy.

Consider the extreme case where the quasimetric is the shortest-path distance on a tree,

whose each edge is converted into two opposing directed ones and assigned arbitrary

non-negative weights. Such a quasimetric space has treewidth 1 (see Definition 3.2.2).

On a tree,

1. the shortest path between two points is fixed, regardless of the weights assigned,

2. for each internal node 𝑢 and one of its child 𝑐, the followings are quasipartitions:

𝑑′01(𝑥, 𝑦) , 1shortest path from 𝑥 to 𝑦 passes (𝑢, 𝑐)

𝑑′′01(𝑥, 𝑦) , 1shortest path from 𝑥 to 𝑦 passes (𝑐, 𝑢).

Hence it can be exactly represented as a convex combination of quasipartitions.

However, both of observations becomes false when the graph structure becomes more

complex (higher treewidth) and the shortest paths can are less well represented as

tree paths of the tree composition.
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Comparison with unconstrained MLPs. Theorem B.3.4 requires a poly-width

encoder to achieve low distortion. This is comparable with deep unconstrained MLPs

trained in NTK regime, which can reach 0 training error (distortion 1 on training set)

in the limit but also requires polynomial width (Arora et al., 2019b).

Quasipseudometrics and infinite distances. Theorem B.3.4 relies on our

assumptions that (𝒳 , 𝑑) is not a quasipseudometric space and has all finite distances.

In fact, if we allow a PQE to have infinite convex combination weights, it can readily

represent quasipseudometric spaces with infinite distances. Additionally, PQE can still

well approximate the quasimetric space with infinities replaced with any sufficiently

large finite value (e.g., larger than the maximum finite distance). Thus, this limit is

generally not important in practice (e.g., learning 𝛾-discounted distances), where a

large value and infinity are usually not treated much differently.

Optimizing quasimetric embeddings. From Theorem B.3.4, we know that op-

timizing PQEs over the training set 𝑆 w.r.t. distortion achieves low distortion (and

optimal violation by definition). While directly optimizing distortion (or error on

log distance or distance ratios, equivalently) seems a valid choice, such objectives do

not always train stably in practice, with possible infinities and zeros. Often more

stable losses are used, such as MSE over raw distances or 𝛾-discounted distances

𝛾𝑑, for 𝛾 ∈ (0, 1). These objectives do not directly relate to distortion, except for

some elementary loose bounds. To better theoretically characterize their behavior, an

alternative approach with an average-case analysis might be necessary.

B.3.4 Implementing Poisson Quasimetric Embeddings (PQEs)

Section 3.5.2 mentioned a couple implementation techniques for PQEs. In this section,

we present them in full details.
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Normalized Measures

Consider a PQE whose each of 𝑗 expected quasipartitions is defined via 𝑘 Poisson

processes, with set parametrizations 𝑢→ 𝐴𝑖,𝑗(𝑢), 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. To be robust to the

choice of 𝑘, we instead use the normalized set parametrizations 𝐴′
𝑖,𝑗’s:

𝐴′
𝑖,𝑗(𝑢) , 𝐴𝑖,𝑗(𝑢)/𝑘, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.168)

This does not change the PQE’s concentration property (Definition B.3.2) or its

theoretical guarantees (e.g., Theorems 3.5.2 and B.3.4).

Outputting 𝛾-Discounted Distances

Recall the PQE quasimetric formulation in Equation (3.14), for 𝛼𝑖 ≥ 0, and encoder

𝑓 : 𝒳 → R𝑑 (with set parametrizations 𝐴𝑖,𝑗’s and measures 𝜇𝑖,𝑗’s):

𝑑(𝑥, 𝑦) ,
∑︁
𝑖

𝛼𝑖

(︂
1−
∏︁
𝑗

P
[︁
Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥) ∖ 𝐴

𝑓
𝑖,𝑗(𝑦)) ≤ Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦) ∖ 𝐴

𝑓
𝑖,𝑗(𝑥))

]︁)︂
,

(3.14)

where we used shorthands 𝐴𝑓𝑖,𝑗(𝑥) , 𝐴𝑖,𝑗(𝑓(𝑥)).

With discount factor 𝛾 ∈ (0, 1), we can write the 𝛾-discounted PQE distance as

𝛾𝑑(𝑥,𝑦) =
∏︁
𝑖

( 𝛾𝛼𝑖⏟ ⏞ 
a scalar that can take value in any (0, 1)

)1−
∏︀
𝑗 P[Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥)∖𝐴

𝑓
𝑖,𝑗(𝑦))≤Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦)∖𝐴

𝑓
𝑖,𝑗(𝑥))]. (B.169)

Therefore, instead of learning 𝛼𝑖 ∈ [0,∞), we can learn bases 𝛽𝑖 ∈ (0, 1) such and

define the 𝛾-discounted PQE distance as

𝛾𝑑(𝑥,𝑦) ,
∏︁
𝑖

𝛽
1−

∏︀
𝑗 P[Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥)∖𝐴

𝑓
𝑖,𝑗(𝑦))≤Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦)∖𝐴

𝑓
𝑖,𝑗(𝑥))]

𝑖 . (B.170)

These bases 𝛽𝑖 ∈ (0, 1) can be parametrized via a sigmoid transform. Consider

quasimetric learning w.r.t. errors on 𝛾-discounted distances (e.g., MSE). Unlike the

parametrization with directly learning the convex combination weights 𝛼𝑖’s, such a

parametrization (that learns the bases 𝛽𝑖’s) does not explicitly include 𝛾 and thus can
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potentially be more stable for a wider range of 𝛾 choices.

Initialization. Consider learning bases 𝛽𝑖’s via a sigmoid transform: learning 𝑏𝑖

and defining 𝛽𝑖 , 𝜎(𝑏𝑖). We must take care in initializing these 𝑏𝑖’s so that 𝜎(𝑏𝑖)’s are

not too close to 0 or 1, since we take a product of powers with these bases. To be

robust to different ℎ numbers of quasipartition distributions, we initialize the each 𝑏𝑖

to be from the uniform distribution

𝒰 [𝜎−1(0.52/ℎ), 𝜎−1(0.752/ℎ)], (B.171)

which means that, at initialization,

∏︁
𝑖∈[ℎ]

𝛽0.5
𝑖 =

∏︁
𝑖∈[ℎ]

𝜎(𝑏𝑖)
0.5 ∈ [0.5, 0.75], (B.172)

providing a good range of initial outputs, assuming that the exponents (expected

outputs of quasipartition distributions) are close to 0.5. Alternatively, 𝑏𝑖’s maybe

parametrized by a deep linear network, a similar initialization is employed. See

Appendix B.3.4 below for details.

Learning Linear/Convex Combinations with Deep Linear Networks

Deep linear networks have the same expressive power as regular linear models, but

enjoy many empirical and theoretical benefits in optimization (Saxe et al., 2013;

Pennington et al., 2018; Huh et al., 2021). Specifically, instead of directly learning

a matrix ∈ R𝑚×𝑛, a deep linear network (with bias) of 𝑙 layers learns a sequence of
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matrices

𝑀1 ∈ R𝑚1×𝑛 (B.173)

𝑀2 ∈ R𝑚2×𝑚1 (B.174)
...

... (B.175)

𝑀𝑙−1 ∈ R𝑚𝑙−1×𝑚𝑙−2 (B.176)

𝑀𝑙 ∈ R𝑚×𝑚𝑙−1 (B.177)

𝐵 ∈ R𝑚×𝑛, (B.178)

where the linear matrix can be obtained with

𝑀𝑙 𝑀𝑙−1 . . .𝑀2 𝑀1 +𝐵, (B.179)

and we require

min(𝑚1,𝑚2, . . . ,𝑚𝑙−1) ≥ min(𝑚,𝑛). (B.180)

In our case, the convex combination weights for the quasipartition distributions

often need to be large, in order to represent large quasimetric distances; in Poisson pro-

cess mean measures with learnable scales (e.g., the Gaussian-based measure described

in Appendix B.3.2), the scales may also need to be large to approximate particular

quasipartitions (see Appendix B.3.3).

Therefore, we choose to use deep linear networks to optimize these parameters. In

particular,

• For the convex combination weights for ℎ quasipartition distributions,

– When learning the convex combination weights {𝛼𝑖}𝑖∈[ℎ], we use a deep

linear network to parametrize a matrix ∈ R1×ℎ (i.e., a linear map from Rℎ

to R), which is then viewed as a vector ∈ Rℎ and applied an element-wise

square transform 𝑎→ 𝑎2 to obtain non-negative weights 𝛼 ∈ [0,∞)ℎ;

– When learning the bases for discounted quasimetric distances 𝛽𝑖’s (see

Appendix B.3.4), we use a deep linear network to parametrize a matrix
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∈ Rℎ×1, which is then viewed as a vector ∈ Rℎ and applied an element-wise

sigmoid transform 𝑎→ 𝜎(𝑎) to obtain bases 𝛽 ∈ (0, 1)ℎ.

Note that here we parametrize a matrix ∈ Rℎ×1 rather than R1×ℎ as above

for 𝛼𝑖’s. The reason for this choice is entirely specific to the initialization

scheme we use (i.e., (fully-connected layer weight matrix initialization, as

discussed below). Here the interpretation of a linear map is no longer

true. If we use R1×ℎ, the initialization method would lead to the entries

distributed with variance roughly 1/𝑛, which only makes sense if they are

then added together. Therefore, we use Rℎ×1, which would lead to constant

variance.

• For scales of the Poisson process mean measure, such as PQE-GG, we

consider a slightly different strategy.

Consider a PQE formulation with ℎ× 𝑘 independent Poisson processes, from

which we form ℎ quasipartition distributions, each from 𝑘 total orders parametrized

by 𝑘 Poisson processes. The Poisson processes are defined on sets

{𝐴𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘], (B.181)

use mean measures

{𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘], (B.182)

and set parametrizations

{𝑢→ 𝐴𝑖,𝑗(𝑢)}𝑖∈[ℎ],𝑗∈[𝑘], (B.183)

to compute quantities

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.184)

Scaling each mean measure independently. Essentially, adding learnable

scales (of mean measures) 𝑤 ∈ [0,∞)ℎ×𝑘 (or, equivalently, {𝑤𝑖,𝑗 ∈ [0,∞)}𝑖,𝑗)
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gives a scaled set of measures

{𝑤𝑖,𝑗 · 𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘]. (B.185)

This means that the quantities in Equation (B.184) becomes respectively scaled

as

𝑤𝑖,𝑗 · 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.186)

Convex combinations of all measures. However, we can be more flexible

here, and allow not just scaling each measure independently, but also convex

combinations of all measures. Instead of having 𝑤 as a collection of ℎ× 𝑘 scalar

numbers ∈ [0,∞), we have a collection of (ℎ × 𝑘) vectors each having length

(ℎ× 𝑘) (or ℎ× 𝑘-shape tensors)

{𝑤𝑖,𝑗 ∈ [0,∞)ℎ×𝑘}𝑖∈[ℎ],𝑗∈[𝑘], (B.187)

and have the quantities in Equation (B.184) respectively scaled and combined

as

∑︁
𝑖′,𝑗′

𝑤𝑖,𝑗,𝑖′,𝑗′ · 𝜇𝑖′,𝑗′(𝐴𝑖′, 𝑗′(𝑢) ∖ 𝐴𝑖′,𝑗′(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘].

(B.188)

Note that these still are valid Poisson processes for a PQE. Specifically, the new

Poisson processes now all use the same set parametrization (as the collection of

original ones), with different measures (as different weighted combinations of

the original measures). This generalizes the case where each mean measure is

scaled independently (as 𝑤 can be diagonal).

Therefore, we will apply this more general strategy using convex combinations

of all measures.

Similarly to learning the convex combination weights of quasipartition distribu-
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tions, we collapse a deep linear network into a tensor ∈ Rℎ×𝑘×ℎ×𝑘, and apply an

element-wise square 𝑎→ 𝑎2, result of which is used as the convex combination

weights 𝑤 to ensure non-negativity.

Initialization. For initializing the matrices (𝑀1,𝑀2, . . . ,𝑀𝑙) of a deep linear net-

work (Equation (B.177)), we use the standard weight matrix initialization of fully-

connected layers in PyTorch (Paszke et al., 2019). The bias matrix 𝐵 (Equa-

tion (B.178)) is initialized to all zeros.

When used for learning the bases for discounted quasimetric distances 𝛽𝑖’s (as

described in Appendix B.3.4), we have a deep linear network parametrizing a matrix

∈ Rℎ×1, initialized in the same way as above (including initializing 𝐵 as all zeros).

Consider the matrix up to before the last one:

𝑀* ,𝑀𝑙−1 ·𝑀2 𝑀1 ∈ R𝑚𝑙−1×1. (B.189)

𝑀* is essentially a projection to be applied on each row of the last matrix𝑀𝑙 ∈ Rℎ×𝑚𝑙−1 ,

to obtain 𝑏𝑖 (which is then used to obtain bases 𝛽𝑖 , 𝜎(𝑏𝑖)). Therefore, we simply

rescale the 𝑀* subspace for each row of 𝑀𝑙 and keep the orthogonal space intact, such

that the projections would be distributed according to the distribution specified in

Equation (B.171):

𝒰 [𝜎−1(0.52/ℎ), 𝜎−1(0.752/ℎ)], , (B.171)

which has good initial value properties, as shown in Appendix B.3.4.

Choosing ℎ the Number of Quasipartition Distributions and 𝑘 the Number

of Poisson Processes for Each Quasipartition Distribution

A PQE (class) is defined with ℎ × 𝑘 independent Poisson processes with means

{𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘] along with ℎ × 𝑘 set parametrizations {𝐴𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘]. For 𝑘 pairs of

means and set parametrizations, we obtain a random quasipartition. A mixture

(convex combination) of the resulting ℎ random quasipartitions gives the quasimetric.

The choices of 𝜇 and 𝐴 are flexible. In this work we explore PQE-LH and PQE-GG
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as two options, both using essentially the same measure and parametrization across

all 𝑖, 𝑗 (up to individual learnable scales). These two instantiations both perform well

empirically. In this section we aim to provide some intuition on choosing these two

hyperparameters ℎ and 𝑘.

ℎ the Number of Quasipartition Distributions Theoretical result Theorem B.3.4

suggest thats, for a quasimetric space with 𝑛 elements, 𝑛2 quasipartition distributions

suffice to learn a low distortion embedding. Since this is a worst-case result, the prac-

tical scenario may require much fewer quasipartitions. For instance, Appendix B.3.3

shows that 𝒪(𝑛) quasipartitions is sufficient for any quasimetric space with a tree

structure. In our experiments, ℎ ∈ [8, 128] quasipartition distributions are used.

𝑘 the Number of Poisson Processes for Each Quasipartition Distribution

(Random Partial Order) It is well-known that such intersection of sufficiently

many total orders can represent any partial order (Trotter, 1995; Hiraguchi, 1951).

This idea is equivalent with the dominance drawing dimension of directed graphs

(Ortali and Tollis, 2019), which concerns an order embedding of the vertices to preserve

the poset specified by the reachability relation. In this graph theoretical view, several

results are known. (Felsner et al., 2010) prove that planar graphs have at most 8

dimension. (Ortali and Tollis, 2019) show that the dimension of any graph with 𝑛

vertices is at most min(𝑤𝑃 ,
𝑛
2
), where 𝑤𝑃 the maximum size of a set of incomparable

vertices. A simpler and more fundamental result can be traced to Hiraguchi from

1951:

Theorem B.3.6 (Hiraguchi’s Theorem (Hiraguchi, 1951; Bogart, 1973)).

Let (𝑋,𝑃 ) be a partially ordered set such that |𝑋| ≥ 4. Then there exists a mapping

𝑓 : 𝑋 → R⌊|𝑋|/2⌋ such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑥𝑃𝑦 ⇐⇒ 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise . (B.160)

Theorem B.3.6 states that 𝑛
2

dimensions generally suffice for any poset of size

𝑛 ≥ 4.
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Figure B-4: The 3-element quasimetric space, and the training pairs. Training set contains
all pairs except for (𝑎, 𝑐). Arrows show quasimetric distances (rather than edge weights of
some graph).

In our formulation, this means that using 𝑘 = 𝑛
2

Poisson processes (giving 𝑛
2

random

total orders) will be maximally expressive. In practice, this is likely unnecessary and

sometimes impractical. In our experiments, we choose a small fixed number 𝑘 = 4.

B.4 Experiment Settings and Additional Results

Computation power. All our experiments run on a single GPU and finish within

3 hours. GPUs we used include NVIDIA 1080, NVIDIA 2080 Ti, NVIDIA 3080 Ti,

NVIDIA Titan Xp, NVIDIA Titan RTX, and NVIDIA Titan V.

B.4.1 Experiments from Section 3.3.2: A Toy Example

In Section 3.3.2 and Figure 3-2, we show experiment results on a simple 3-element

quasimetric space.

Quasimetric space. The quasimetric space has 3 elements with one-hot features

∈ R3. Thequasimetric and training pairs are shown in Figure B-4.

Unconstrained network. The unconstrained network has architecture 6-128-128-

32-1, with ReLU activations.
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Metric embedding. The embedding space is 32-dimensional, upon which corre-

sponding metric is applied. The encoder network has architecture 6-128-128-32, with

ReLU activations.

Asymmetric dot products. The embedding space is 32-dimensional. The two

inputs are encoded with a different encoder of architecture 6-128-128-32, with ReLU

activations. Then the dot product of the two 32-dimensional vector is taken, which

parametrizes a distance estimate

Poisson Quasimetric Embeddings. The embedding space is 32-dimensional,

which parametrizes 8 quasimetric distributions, each from 4 independent Poisson

processes using (scaled) Lebesgue measure and half-lines. We use deep linear networks,

as described in Appendix B.3.4. A deep linear network (without bias) of architecture

8-32-32-1 parametrizes the convex combination weights {𝛼𝑖}𝑖∈[8]. Another deep linear

network (without bias) of architecture 32-64-64-32 parametrizes convex combination

weights of the mean measures 𝑑 ∈ [0,∞)32×32. Note that these do not give many more

effective parameters to PQEs as they are equivalent with simple linear transforms.

Optimization. All models are trained w.r.t. MSE on distances with the Adam

optimizer (Kingma and Ba, 2014) with learning rate 0.0003 for 1000 iterations (without

mini-batching since the training set has size 8).

Additional results. Results with additional formulations (together with the ones

presented in Figure 3-2) are shown in Figure B-5.

B.4.2 Experiments from Section 3.5.5: Experiments

Triangle inequality regularizer. For methods that do not inherently respect

triangle inequalities (e.g., unconstrained networks and asymmetrical dot products),

we explore training with a regularizer that encourages following these inequalities. By

sampling random triplets uniformly over the training set, the regularizer is formulated
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Figure B-5: Training different formulations to fit training pairs distances via MSE, and using
them to predict on the test pair. Plots show distribution of the prediction over 100 runs.
Standard deviations of the training error are shown.
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as,

E𝑥,𝑦,𝑧
[︀
max(0, 𝛾𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧) − 𝛾𝑑(𝑥,𝑧))2

]︀
, (B.190)

where the 𝛾-discounted terms and the squared form allows easier balancing with the

training loss, which, across all experiments, are MSEs on some 𝛾-discounted distances.

PQE settings. Across all experiments of this section, when given an encoder

architecture mapping input to an R𝑑 latent space, we construct PQEs according to the

following general recipe, to obtain the two PQEs settings used across all experiments:

PQE-LH (PQE with Lebesgue measure and half-lines) and PQE-GG (PQE with

Gaussian-based measure and Gaussian shapes, see see Appendix B.3.2):

• (Assuming 𝑑 is a multiple of 4,) We use ℎ ,= 𝑑/4 quasipartition distributions,

each given by 𝑘 , 4 Poisson processes;

• A deep linear network (see Appendix B.3.4), is used for parametrizing the convex

combination weights 𝛼 ∈ R𝑑/4 or the bases 𝛽 ∈ R𝑑/4 (see Appendix B.3.4),

we follow the initialization and parametrization described in Appendix B.3.4,

with hidden sizes [𝑛hidden, 𝑛hidden, 𝑛hidden] (i.e., 4 matrices/layers), where 𝑛hidden ,
max(64, 21+⌈log2(𝑑/4)⌉).

• For PQE-GG,

– The learnable 𝜎2
measure ∈ (0,∞)𝑑 (one for each Poisson Process) is achieved

by optimizing the log variance, which is initialized as all zeros.

– The Gaussian-based measures need learnable scales. We use a deep lin-

ear network to parametrize the [0,∞)𝑑×𝑑 weights for the convex com-

binations of measures, as described in Appendix B.3.4. Similarly, it

has hidden sizes [𝑛hidden, 𝑛hidden, 𝑛hidden] (i.e., 4 matrices/layers), where

𝑛hidden , max(64, 21+⌈log2 𝑑⌉).

Note that the PQEs add only a few extra effective parameters on top of the encoder

(𝑑 for PQE-LH, and 𝑑 + 𝑑2 for PQE-GG), as the deep linear networks do not add

extra effective parameters.
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Mixed space metric embedding settings. Across all experiments of this section,

when given an encoder architecture mapping input to an R𝑑 latent space, we construct

the metric embedding into mixed space as follows:

• (Assuming 𝑑 is a multiple of 4,) We use (1) a (𝑑/2)-dimensional Euclidean space

(2) a (𝑑/4)-dimensional ℓ1 space, and a (𝑑/4)-dimensional spherical distance

space (without scale).

• Additionally, we optimize three scalar values representing the log weights of the

convex combination to mix these spaces.

DeepNorm and WideNorm method overview and parameter count com-

parison with PQEs. Both DeepNorm and WideNorm parametrize asymmetrical

norms. When used to approximate quasimetrics, they are applied as 𝑑(𝑥, 𝑦) ,
𝑓AsymNorm(𝑓Enc(𝑥)− 𝑓Enc(𝑦)), where 𝑓Enc is the encoder mapping from data space to an

R𝑑 latent space and 𝑓AsymNorm is either the DeepNorm or the WideNorm predictor on

that latent space (Pitis et al., 2020).

• DeepNorm is a modification from Input Convex Neural Network (ICNN; Amos

et al. (2017)), with restricted weight matrices and activation functions for positive

homogeneity (a requirement of asymmetrical norms), and additional concave

function for expressivity.

For an input latent space of R𝑑, consider an 𝑛-layer DeepNorm with width 𝑤

(i.e., ICNN output size) and the suggested intermediate MaxReLU activation

and MaxMean final aggregation (see (Pitis et al., 2020) for details of these

280



functions). This DeepNorm predictor 𝑓DeepNorm (on latent space) has

#parmaters of 𝑓DeepNorm = 𝑛× (𝑑× 𝑤)⏟  ⏞  
𝑈 matrices from input to each layer

+ (𝑛− 1)× 𝑤2⏟  ⏞  
𝑊 matrices between neighboring layer activations

+ 𝑛× 𝑤⏟  ⏞  
intermediate MaxReLU activations

+ 𝑤 × (4 + 5)⏟  ⏞  
concave function (with 5 components) parameters

+ 1⏟ ⏞ 
final MaxMean aggregation

,

which is on the order of 𝒪(𝑛𝑤max(𝑑, 𝑤)). In the common case where the hidden

size 𝑤 is chosen to be on the same magnitude as 𝑑, this becomes 𝒪(𝑛𝑑2).

• WideNorm is based on the observation that

𝑥→ ‖𝑊 ReLU(𝑥 ::−𝑥)‖2 (B.191)

is an asymmetric norm when 𝑊 is non-negative, where :: denotes vector concate-

nation. WideNorm then learns many such norms each with a different 𝑊 matrix

parameter, before (again) feeding the norm values into a concave function and

aggregating them together with MaxMean.

For an input latent space of R𝑑, consider a WideNorm with 𝑐 such learned

norms with 𝑊 matrices of shape R(2𝑑)×𝑤
≥>0 . This WideNorm predictor 𝑓WideNorm
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(on latent space), has

#parmaters of 𝑓WideNorm = 𝑐× (2𝑑× 𝑤)⏟  ⏞  
𝑊 matrices

+ 𝑐× (4 + 5)⏟  ⏞  
concave function (with 5 components) parameters

+ 1⏟ ⏞ 
final MaxMean aggregation

,

which is on the order of 𝒪(𝑐𝑑𝑤). In the common case where both the number

of components 𝑐 and the output size of each component (before applying the

𝑙2-norm) are chosen to be on the same magnitude as 𝑑, this becomes 𝒪(𝑑3).

For both DeepNorm and WideNorm, their parameter counts are much larger than

the number of effective parameters of PQEs (𝑑 for PQE-LH and 𝑑+ 𝑑2 for PQE-GG).

For a 256-dimensional latent space, this difference can be on the order of 106 ∼ 107.

DeepNorm and WideNorm settings. Across all experiments of this section,

we evaluate 2 DeepNorm settings and 3 WideNorm settings, all derived from the

experiment setting of the original paper (Pitis et al., 2020). For both DeepNorm

and WideNorm, we use MaxReLU activations, MaxMean aggregation, and concave

function of 5 components. For DeepNorm, we use 3-layer networks with 2 different

hidden sizes: 48 and 128 for the 48-dimensional latent space in random directed

graphs experiments, 512 and 128 for the 512-dimensional latent space in the large-scale

social graph experiments, 128 and 64 for the 128-dimensional latent space in offline

Q-learning experiments. For WideNorm, we components of size 32 and experiment

with 3 different numbers of components: 32, 48, and 128.

Error range. Results are gathered across 5 random seeds, showing both averages

and population standard deviations.
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Random Directed Graphs Quasimetric Learning

Graph generation. The random graph generation is controlled by three parameters

𝑑, 𝜌un and 𝜌di. 𝑑 is the dimension of the vertex features. 𝜌un specifies the fraction

of pairs that should have at least one (directed) edge between them. 𝜌di specifies

the fraction of such pairs that should only have one (directed) edge between them.

Therefore, if 𝜌un = 1, 𝜌di = 0, we have a fully connected graph; if 𝜌un = 0.5, 𝜌di = 1, we

have a graph where half of the vertex pairs have exactly one (directed) edge between

them, and the other half are not connected. For completeness, the exact generation

procedure for a graph of 𝑛 vertices is the following:

1. randomly add 𝜌un ·𝑛2 undirected edges, each represented as two opposite directed

edges;

2. optimize R𝑛×𝑑 vertex feature matrix using Adam (Kingma and Ba, 2014) w.r.t.

ℒalign(𝛼 = 2) + 0.3 · ℒuniform(𝑡 = 3) from (Wang and Isola, 2020), where each two

node is considered a positive pair if they are connected;

3. randomly initialize a network 𝑓 of architecture 𝑑-4096-4096-4096-4096-1 with

tanh activations;

4. for each connected vertex pair (𝑢, 𝑣), obtain 𝑑𝑢→𝑣 , 𝑓(feature(𝑢))−𝑓(feature(𝑣))

and 𝑑𝑣→𝑢 = −𝑑𝑢→𝑣;

5. for each (𝑢, 𝑣) such that 𝑑𝑢→𝑣 is among the top 1− 𝜌di/2 of such values (which

is guaranteed to not include both directions of the same pair due to symmetry

of 𝑑𝑢→𝑣), make 𝑣 → 𝑢 the only directed edge between 𝑢 and 𝑣.

We experiment with three graphs of 300 vertices and 64-dimensional vertex features:

• Figure B-6: A graph generated with 𝜌un = 0.15, 𝜌di = 0.85;

• Figure B-7: A sparser graph generated with 𝜌un = 0.05, 𝜌di = 0.85;

• Figure B-8: A sparse graph with block structure by
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1. generating 10 small dense graphs of 30 vertices and 32-dimensional vertex

features, using 𝜌un = 0.18, 𝜌di = 0.15,

2. generating a sparse 10-vertex “supergraph” with 32-dimensional vertex

features, using 𝜌un = 0.22, 𝜌di = 0.925,

3. for each supergraph vertex

(a) associating it with a different small graph,

(b) for all vertices of the small graph, concatenate the supergraph vertex’s

feature to the existing feature, forming 64-dimensional vertex features

for the small graph vertices,

(c) picking a random representative vertex from the small graph,

4. connecting all 10 representative vertices in the same way as their respective

supergraph vertices are connected in the supergraph.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 64-128-128-128-48 network with ReLU activations, mapping 64-dimensional inputs

to a 48-dimensional latent space. Unconstrained networks use a similar 128-128-

128-128-48-1 network, mapping concatenated the 128-dimensional input to a scalar

output.

Data. For each graph, we solve the groundtruth distance matrix and obtain 3002

pairs, from which we randomly sample the training set, and use the rest as the test set.

We run on 5 training fractions evenly spaced on the logarithm scale, from 0.01 to 0.7.

Training. We use 2048 batch size with the Adam optimizer (Kingma and Ba,

2014), with learning rate decaying according to the cosine schedule without restarting

(Loshchilov and Hutter, 2016) starting from 10−4 to 0 over 3000 epochs. All models

are optimized w.r.t. MSE on the 𝛾-discounted distances, with 𝛾 = 0.9. When running

with the triangle inequality regularizer, 683 ≈ 2048/3 triplets are uniformly sampled

at each iteration.
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Full results and ablation studies. Figures B-6 to B-8 show full results of all

methods running on all three graphs. In Figure B-9, we perform ablation studies on

the implementation techniques for PQEs mentioned in Appendix B.3.4: outputting

discounted distance and deep linear networks. On the simple directed graphs such as

the dense graph, the basic PQE-LH without theses techniques works really well, even

surpassing the results with both techniques. However, on graphs with more complex

structures (e.g., the sparse graph and the sparse graph with block structure), basic

versions of PQE-LH and PQE-GG starts to perform badly and show large variance,

while the versions with both techniques stably trains to the best results. Therefore,

for robustness, we use both techniques in other experiments.

Large-Scale Social Graphs Quasimetric Learning

Data source. We choose the Berkeley-StanfordWebGraph (Leskovec and Krevl, 2014)

as the large-scale directed social graph, which consists of 685,230 pages as nodes, and

7,600,595 hyperlinks as directed edges. Additionally, we also use the Youtube social

network (Leskovec and Krevl, 2014; Mislove et al., 2007) as a undirected social graph,

which consists of 1,134,890 users as nodes, and 2,987,624 friendship relations as

undirected edges. Both datasets are available from the SNAP website (Leskovec and

Krevl, 2014) under the BSD license.

Data processing. For each graph, we use node2vec to obtain 128-dimensional

node features (Grover and Leskovec, 2016). Since the graph is large, we use the

landmark method (Rizi et al., 2018) to construct training and test sets. Specifically,

we randomly choose 150 nodes, called landmarks, and compute the distances between

these landmarks and all nodes. For directed graph, this means computing distances of

both directions. From the obtained pairs and distances, we randomly sample 2,500,000

pairs to form the training set. Similarly, we form a test set of 150,000 from a disjoint

set of 50 landmarks. For the undirected graph, we double the size of each set by

reversing the pairs, since the distance is symmetrical.
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Figure B-6: Approximating a dense graph. Individual plots on the right show standard
deviations.
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Figure B-7: Approximating a sparse graph. Individual plots on the right show standard
deviations.
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Figure B-8: Approximating a sparse graph with block structure. Individual plots on the
right show standard deviations.
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Figure B-9: Ablation studies of PQE-LH and PQE-GG on three random graphs.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 128-2048-2048-2048-512 network with ReLU activations and Batch Normalization

(Ioffe and Szegedy, 2015) after each activation, mapping 128-dimensional inputs to a

512-dimensional latent space. Unconstrained networks use a similar 256-2048-2048-

2048-512-1 network, mapping concatenated the 256-dimensional input to a scalar

output.

Training. We use 1024 batch size with the Adam optimizer (Kingma and Ba,

2014), with learning rate decaying according to the cosine schedule without restarting

(Loshchilov and Hutter, 2016) starting from 10−4 to 0 over 80 epochs. All models are

optimized w.r.t. MSE on the 𝛾-discounted distances, with 𝛾 = 0.9. When running

with the triangle inequality regularizer, 342 ≈ 1024/3 triplets are uniformly sampled

at each iteration.

Full results. Tables B.1 and B.2 show full results of distance learning on these

two graphs. On the directed Berkeley-StanfordWebGraph, PQE-LH performs the best
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Method Family Formulation
MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQEs
PQE-LH 3.0427 ± 0.1527 1.6263 ± 0.0550 69.9424 ± 0.4930

PQE-GG 3.9085 ± 0.1258 1.8951 ± 0.0336 101.8240 ± 10.3970

Unconstrained Nets
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 3.0862 ± 0.0392 2.1151 ± 0.0241 59.5243 ± 0.3700

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.3541 ± 0.1759 1.0090 × 1023 ± 2.0179 × 1023 5.3583 × 105 ± 1.0582 × 106

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.5663 ± 0.2294 3.3459 ± 0.2494 68.2613 ± 11.6061

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 3.1823 ± 0.1133 ∞ ± NaN 65.8630 ± 0.4287

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 2.8128 ± 0.0625 2.2109 ± 0.0341 61.3709 ± 0.3936

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 2.9344 ± 0.0455 ∞ ± NaN ∞ ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.9947 ± 0.4198 16.5445 ± 29.3175 58.9205 ± 6.4216

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 2.9178 ± 0.1351 ∞ ± NaN ∞ ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 3.0481 ± 0.1272 2.3729 ± 0.1378 60.4040 ± 0.1890

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.0161 ± 0.0718 ∞ ± NaN 3.1289 × 1016 ± 6.2579 × 1016

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.4921 ± 0.3534 3.6930 ± 0.4896 90.6206 ± 66.5704

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 4.4046 ± 0.5167 2.7873 ± 0.0770 31.3195 ± 0.9929

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 2.9314 ± 0.1022 2.2634 ± 0.1147 ∞ ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 5.2955 ± 0.5279 3.8060 ± 0.2908 58.1193 ± 0.4383

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.5713 ± 0.2002 212.5421 ± 416.9256 ∞ ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.3745 ± 0.3709 2.9491 ± 0.2228 53.1119 ± 5.5452

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 7.3416 ± 0.6486 3.5232 ± 0.1352 26.9200 ± 0.4697

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 3.5818 ± 0.3565 ∞ ± NaN 65.7709 ± 0.8646

Asym. Dot Products
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 3.1622 × 1019 ± NaN 23.4270 ± NaN 0.1529 ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1056 ± 0.0056 2.5195 × 1011 ± 2.1751 × 1011 2.6794 × 1011 ± 2.5398 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.1073 ± 0.0112 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1041 ± 0.0035 1.9498 × 1011 ± 7.9641 × 1010 1.6049 × 1011 ± 3.7099 × 1010

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.1103 ± 0.0110 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1021 ± 0.0002 2.2986 × 1011 ± 9.1970 × 1010 2.5002 × 1011 ± 1.4464 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 58.4894 ± 23.2224 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1031 ± 0.0020 2.3522 × 1011 ± 2.6429 × 1011 1.7025 × 1011 ± 1.0700 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.3034 ± 0.4485 ∞ ± NaN ∞ ± NaN

Metric Embeddings

Euclidean space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖2 17.5952 ± 0.2667 7.5399 ± 0.0742 53.8500 ± 3.8430

ℓ1 space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖1 18.0521 ± 0.3546 7.1154 ± 0.1835 66.2507 ± 3.3308

Spherical distance space w/ learnable scale 𝛼 𝑑(𝑥, 𝑦) , 𝛼 · arccos( 𝑓(𝑥)T𝑓(𝑦)
‖𝑓(𝑥)‖2‖𝑓(𝑦)‖2

) 19.2990 ± 0.2032 6.9545 ± 0.0887 32.1458 ± 0.4562

Mixing above three spaces w/ learnable weights 17.8312 ± 0.3099 7.3493 ± 0.1086 51.7481 ± 3.6248

DeepNorms
3-layer 128-width 7.0862 ± 0.3170 2.4498 ± 0.0617 111.2209 ± 2.5045

3-layer 512-width 5.0715 ± 0.1348 2.0853 ± 0.0633 120.0452 ± 4.3525

WideNorms

32-component (each of size 32) 3.5328 ± 0.2120 1.7694 ± 0.0213 124.6580 ± 2.8678

48-component (each of size 32) 3.6842 ± 0.2385 1.8081 ± 0.0680 122.6833 ± 5.5026

128-component (each of size 32) 3.8125 ± 0.2331 1.8096 ± 0.0765 128.5427 ± 5.1412

Table B.1: Quasimetric learning on the large-scale directed Berkeley-StanfordWebGraph.
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Method Family Formulation
MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQEs
PQE-LH 2.4400 ± 0.0695 0.6480 ± 0.0119 NaN ± NaN

PQE-GG 2.5895 ± 0.0318 0.6697 ± 0.0042 NaN ± NaN

Unconstrained Nets
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4883 ± 0.0168 0.5084 ± 0.0029 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5223 ± 0.0160 0.4910 ± 0.0151 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 2.2955 ± 1.1674 0.6185 ± 0.1409 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.5069 ± 0.0228 0.4975 ± 0.0211 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4802 ± 0.0197 0.5082 ± 0.0036 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.5009 ± 0.0208 0.5107 ± 0.0032 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5206 ± 0.0444 0.4935 ± 0.0098 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 1.7398 ± 0.3896 0.5488 ± 0.0600 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.5005 ± 0.0148 0.4986 ± 0.0121 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4851 ± 0.0168 0.5089 ± 0.0026 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4999 ± 0.0243 0.5107 ± 0.0046 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5224 ± 0.0376 0.4948 ± 0.0169 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 1.8875 ± 0.5078 0.5692 ± 0.0683 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.4769 ± 0.0176 0.4919 ± 0.0128 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4846 ± 0.0115 0.5088 ± 0.0021 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4939 ± 0.0110 0.5099 ± 0.0018 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5154 ± 0.0389 0.4871 ± 0.0174 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 2.4747 ± 1.0850 0.6505 ± 0.1357 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.4915 ± 0.0127 0.4983 ± 0.0160 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4829 ± 0.0153 0.5084 ± 0.0029 NaN ± NaN

Asym. Dot Products
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 2633.7907 ± NaN 11.3879 ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1550 ± 0.0022 7.8948 × 1011 ± 7.4010 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) 2.6920 ± 1.2655 0.7062 ± 0.2156 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 182.2068 ± 1.2382 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 9.9748 × 105 ± NaN 8.1867 ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1560 ± 0.0010 6.8658 × 1011 ± 3.4985 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 183.3337 ± 1.0384 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1552 ± 0.0021 7.4588 × 1011 ± 3.7277 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 191.0928 ± 9.7137 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1556 ± 0.0020 9.0283 × 1011 ± 6.0203 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 228.0300 ± 37.0632 ∞ ± NaN NaN ± NaN

Metric Embeddings

Euclidean space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖2 1.3131 ± 0.0671 0.4833 ± 0.0128 NaN ± NaN

ℓ1 space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖1 3.5993 ± 1.5986 0.7787 ± 0.1842 NaN ± NaN

Spherical distance space w/ learnable scale 𝛼 𝑑(𝑥, 𝑦) , 𝛼 · arccos( 𝑓(𝑥)T𝑓(𝑦)
‖𝑓(𝑥)‖2‖𝑓(𝑦)‖2

) 6.7731 ± 0.1915 1.0829 ± 0.0177 NaN ± NaN

Mixing above three spaces w/ learnable weights 2.1014 ± 0.0685 0.5923 ± 0.0109 NaN ± NaN

DeepNorms
3-layer 128-width 8.0192 ± 0.2476 1.1834 ± 0.0213 NaN ± NaN

3-layer 512-width 5.4366 ± 0.0855 0.9666 ± 0.0072 NaN ± NaN

WideNorms

32-component (each of size 32) 3.0841 ± 0.0667 0.7272 ± 0.0068 NaN ± NaN

48-component (each of size 32) 3.0438 ± 0.1322 0.7247 ± 0.0173 NaN ± NaN

128-component (each of size 32) 2.9964 ± 0.1363 0.7173 ± 0.0166 NaN ± NaN

Table B.2: Metric learning on the large-scale undirected Youtube graph. This graph does not
have unreachable pairs so the last column is always NaN.
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(w.r.t. discounted distance MSE). While PQE-GG has larger discounted distance MSE

than some other baselines, it accurately predicts finite distances and outputs large

values for unreachable pairs. On the undirected Youtube graph, perhaps as expected,

metric embedding methods have an upper hand, with the best performing method

being an Euclidean space embedding. Notably, DeepNorms and WideNorms do much

worse than PQEs on this symmetric graph.

Offline Q-Learning

As shown in Proposition B.1.4 and Remark B.1.5, we know that a quasimetric is

formed with the optimal goal-reaching plan costs in a MDP ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾)

where each action has unit cost (i.e., negated reward). The quasimetric is defined on

𝒳 , 𝒮 ∪ (𝒮 ×𝒜).

Similarly, Tian et al. (2020a) also make this observation and propose to optimize

a distance function by Q-learning on a collected set of trajectories. The optimized

distance function (i.e., Q-function) is then used with standard planning algorithms

such as the Cross Entropy Method (CEM) (De Boer et al., 2005). The specific

model they used is an unconstrained network 𝑓 : (𝑠, 𝑎, 𝑠′) → R, outputting discounted

distances (Q-values).

Due to the existing quasimetric structure, we explore using PQEs as the distance

function formulation. We mostly follow the algorithm in Tian et al. (2020a) except

for the following minor differences:

• Tian et al. (2020a) propose to sample half of the goal from future steps of the

same trajectory, and half of the goal from similar states across the entire dataset,

defined by a nearest neighbor search. For simplicity, in the latter case, we instead

sample a random state across the entire dataset.

• In Tian et al. (2020a), target goals are defined as single states, and the Q-learning

formulation only uses quantities distances from state-action pairs (𝑠, 𝑎) ∈ 𝒮 ×𝒜

to states 𝑠′: 𝑑((𝑠, 𝑎), 𝑠′).

However, if we only train on 𝑑((𝑠, 𝑎), 𝑠′), quasimetric embeddings might not
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learn much about the distance to state-action pairs, or from states, because it

may simply only assign finite distances to 𝑑((𝑠, 𝑎), 𝑠′), and set everything else to

infinite. To prevent such issues, we choose to use state-action pairs as target

goals, by adding a random action. Then, the embedding methods only need to

embed state-action pairs.

In planning when the target is actually a single goal 𝑠′ ∈ 𝒮, we use the following

distance/Q-function

𝑑((𝑠, 𝑎), 𝑠′) , −1 +
1

|𝒜|
∑︁
𝑎′∈𝒜

𝑑((𝑠, 𝑎), (𝑠′, 𝑎′)). (B.192)

Such a modification is used for all embedding methods (PQEs, metric embeddings,

asymmetrical dot products). For unconstrained networks, we test both the

original formulation (of using single state as goals) and this modification.
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Figure B-10: Grid-world offline Q-learning average planning success rates in the environment
shown right.

Environment. The environment is a grid-world with one-way doors, as shown in of

Figure B-10, which is built upon gym-minigrid (Chevalier-Boisvert et al., 2018) (a

project under Apache 2.0 License). The agent has 4 actions corresponding to moving

towards 4 directions. When it moves toward a direction that is blocked by a wall or
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an one-way door, it does not move. States are represented as 18-dimensional vectors,

containing the 2D location of the agent (normalized to be within [−1, 1]2). The other

dimensions are always constant in our enviroment as they refer to information that

can not be changed in this particular environment (e.g., the state of the doors). The

agent always starts at a random location in the center room (e.g., the initial position

of the red triangle in Figure B-10). The environment also defines a goal sampling

distribution as a random location in one of the rooms on the left or right side. Note

that this goal distribution is only used for data collection and evaluation. In training,

we train goal-conditional policies using the goal sampling mechanism adapted from

Tian et al. (2020a), as described above.

Training trajectories. To collect the training trajectories, we use an 𝜖-greedy

planner with groundtruth distance toward the environment goal, with a large 𝜖 = 0.6.

Each trajectory is capped to have at most 200 steps.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 18-2048-2048-2048-1024 network with ReLU activations and Batch Normalization

(Ioffe and Szegedy, 2015) after each activation, mapping a 18-dimensional state to

four 256-dimensional latent vectors, corresponding to the embeddings for all four

state-action pairs. Unconstrained networks use a similar architecture and take in

concatenated 36-dimensional inputs. With the original formulation with states as goals,

we use a 36-2048-2048-2048-256-4 network to obtain a R|𝒜| output, representing the

distance/Q-values from each state-action pair to the goal; with the modified formulation

with state-action pairs as goals, we use a 36-2048-2048-2048-256-16 network to obtain

a R|𝒜|×|𝒜| output.

Training. We use 1024 batch size with the Adam optimizer (Kingma and Ba,

2014), with learning rate decaying according to the cosine schedule without restarting

(Loshchilov and Hutter, 2016) starting from 10−4 to 0 over 1000 epochs. Since we are

running Q-learning, all models are optimized w.r.t. MSE on the 𝛾-discounted distances,

with 𝛾 = 0.95. When running with the triangle inequality regularizer, 341 ≈ 1024/3
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triplets are uniformly sampled at each iteration.

Planning details. To use the learned distance/Q-function for planning towards a

given goal, we perform greedy 1-step planning, where we always select the best action

in 𝒜 according to the learned model, without any lookahead. In each of 50 runs, the

planner is asked to reach a goal given by the environment within 300 steps. The set

of 50 initial location and goal states is entirely decided by the seed used, regardless of

the model. We run each method 5 times using the same set of 5 seeds.

Full results. Average results across 5 runs are shown in Figure B-10, with full

results (with standard deviations) shown in Figure B-11. Planning performance across

the formulations vary a lot, with PQEs and the Euclidean metric embedding being

the best and most data-efficient ones. Using either formulation (states vs. state-action

pairs as goals) does not seem to affect the performance of unconstrained networks.

We note that the the asymmetrical dot product formulation outputting discounted

distance is similar to Universal Value Function Approximators (UVFA) formulation

(Schaul et al., 2015); the unconstrained network outputting discounted distance with

states as goals is the same formulation as the method from Tian et al. (2020a).
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Figure B-11: Grid-world offline Q-learning full results. Individual plots on show standard
deviations.
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Figure B-11: Grid-world offline Q-learning full results (cont.). Individual plots on show
standard deviations.
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B.5 Deriving IQE From PQE

Here we will derive IQE via modifying the PQE-LH formula to scale linearly with

latent (i.e., to have latent positive homogeneity).

Recall the PQE-LH formula:

𝑑PQE-LH(𝑢, 𝑣;𝛼) =
∑︁
𝑖

𝛼𝑖 · (1− exp(−
∑︁
𝑗

(𝑢𝑖𝑗 − 𝑣𝑖𝑗)
+)). (B.193)

To make it scale linearly with latents, we must avoid the exponentiation transform

on latent vector values, and instead use the latent vector to control a linear quantity.

Therefore, we will reformulate the outer sum as an integral, and use latent vector to

indicate where the summand (now integrand) has non-zero values.

First, we reformulate Equation (B.193) with an integration without weighting (by

𝛼), and obtain PQE-LH:

𝑑Integral-PQE-LH(𝑢, 𝑣) =
∫︁
𝑥

(1− exp(−
∑︁
𝑗

(ℎ𝑗(𝑢;𝑥)− ℎ𝑗(𝑣;𝑥))
+)) d𝑥. (B.194)

PQE-LH is derived by considering processes only activated on sets of the form

[𝑥,∞) (half-lines). Inspired by this choice, we consider ℎ𝑗(𝑢;𝑥) =

⎧⎪⎨⎪⎩𝑐 if 𝑥 > 𝑢𝑗

0 otherwise
,

for some 𝑐 > 0.

Then

𝑑Integral-PQE-LH(𝑢, 𝑣; 𝑐) =
∫︁
𝑥

(1− exp(−𝑐 · |{𝑗 : 𝑥 ∈ [𝑢𝑗,max(𝑢𝑗, 𝑣𝑗)]}|) d𝑥. (B.195)

Take 𝑐→ ∞, we have

𝑑Integral-PQE-LH(𝑢, 𝑣) =
∫︁
𝑥

1∃𝑗,𝑥∈[𝑢𝑗 ,max(𝑢𝑗 ,𝑣𝑗)] d𝑥 (B.196)

=

⃒⃒⃒⃒
⃒⋃︁
𝑗

[𝑢𝑗,max(𝑢𝑗, 𝑣𝑗)]

⃒⃒⃒⃒
⃒, (B.197)
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which is exactly the IQE component.

Then, for expressivity, we combine several such components and obtain IQEs.

B.6 Proofs for Section 3.6: Interval Quasimetric Em-

beddings (IQEs)

Theorem 3.6.1. • Proof for IQE-maxmean.

At 𝑙 = 1, IQE-maxmean formula can exactly recover the MRN asymmetrical

component 𝑑asym. By Theorem 2 of Liu et al. (2022), (𝑓1, 𝑑asym) can exactly

represent 𝑑 for some 𝑓1. Therefore, the same results apply to 𝑑IQE-maxmean.

• Proof for IQE-sum.

For 𝑑IQE-sum, we present a novel construction that allows it to represent any

quasipartition, and thus any convex combination of quasipartitions. Then, by

Lemma B.3.5, some convex combination of quasipartitions admits a 𝒪(𝑡 log2 𝑛)

embedding.

WLOG, consider any quasipartition 𝜋 represented as an order embedding 𝑔 : 𝒳 →

[𝑛]𝑚. That is,

𝜋(𝑢, 𝑣) =

⎧⎪⎨⎪⎩0 if 𝑔(𝑢) ≤ 𝑔(𝑣) coordinate-wise

1 otherwise.
(B.198)

Consider vectors 𝑒𝑖 ∈ {0, 1}𝑛, where only the first 𝑖 dimensions are 0’s, and the

rest are 1’s. These vector nicely connect the IQE component structure (union of

intervals) with the order embedding structure (conjunction over coordinate-wise

comparisons).

For any latent 𝑢, 𝑣 and any 𝑖 ∈ [𝑚],

𝑛⋃︁
𝑗=1

[︀
(𝑒𝑔𝑖(𝑢))𝑗,max((𝑒𝑔𝑖(𝑢))𝑗, (𝑒𝑔𝑖(𝑣))𝑗)

]︀
=

⎧⎪⎨⎪⎩∅ if 𝑔𝑖(𝑢) ≤ 𝑔𝑖(𝑣)

[0, 1] otherwise.
(B.199)
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Construct mapping

𝑓(𝑢) , [𝑒𝑔1(𝑢) :: 𝑒𝑔2(𝑢) :: · · · :: 𝑒𝑔𝑚(𝑢)] ∈ {0, 1}𝑚𝑛, (B.200)

where :: denotes concatenation.

Then, for any latent 𝑢, 𝑣,

𝑛⋃︁
𝑗=1

[︀
𝑓𝑖(𝑢),max(𝑓𝑖(𝑢), 𝑓𝑖(𝑣))

]︀
=

⎧⎪⎨⎪⎩∅ if 𝑔(𝑢) ≤ 𝑔(𝑣) coordinate-wise

[0, 1] otherwise.
(B.201)

By using scaled 𝑓 , each IQE component can thus represent arbitrary scaled

quasipartition. Thus IQE-sum can exactly represent any convex of quasiparti-

tions using a polynomial-sized neural encoder.

Theorem 3.6.2. In proof of Theorem 3.6.1, a reduction from MRN asymmetrical part

to IQE-maxmean is given. The same reduction can be applied here. Invoking Theo-

rem 2 of Liu et al. (2022) leads to the desired result.

Theorem 3.6.3. MRN approximation results (same as Theorems 3.6.1 and 3.6.2) are

proved showing that an asymmetric norm (i.e., semi-norm) universally approximate

quasimetrics (Theorem 2 of Liu et al., 2022). Deep Norm and Wide Norm can ap-

proximate any semi-norm (Theorem 2 of Pitis et al., 2020) and thus have the same

properties.
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Appendix C

Proofs, Details, and Additional

Discussions for Chapter 4

C.1 Discussions and Generalizations of QRL

Self-Transitions are in fact already handled by the QRL objective presented in this

paper (Equations (4.6) and (4.12)). For any state 𝑠 (with or without self-transition),

we have 𝑉 *(𝑠; 𝑠) = 0, since the optimal cost to first reach 𝑠 start from 𝑠 is given by

the empty trajectory. This is naturally enforced by our value function model −𝑑𝜃,

since it is enforced to be a quasimetric. For self-transitions (𝑠, 𝑎, 𝑠, 𝑟) in the training

data (where 𝑟 ≤ 0 is the reward), their contribution to the constraint loss term will

always be relu(𝑑𝜃(𝑠, 𝑠) + 𝑟)2 = relu(0 + 𝑟)2 = relu(𝑟)2 = 02 = 0. Therefore, the

constraints are inherently satisfied for self-transitions. So our theoretical results from

Section 4.3.1 also hold for such cases.

Constant Costs. In many cases (and most goal-reaching benchmarks), each envi-

ronment transition has a fixed constant cost 𝐶. In other words, the task is to reach

the given goal as quickly as possible. Then, in the QRL constrained optimization,

we can drop the relu(·) and essentially, since we know that −𝑉 *(𝑠; 𝑠′) = 𝐶 for sure,

and thus we should have 𝑑𝜃(𝑠, 𝑠′) = 𝐶. Technically speaking, the relu(·) formulation

should be able to find the same solution. In our experience, even when it is known

301



that the transition cost is constant, adding this information in the objective, i.e.,

removing relu(·), does not significantly change the results.

General Goals (Sets of States). We can easily extend QRL to general goals,

which are sets of states. Let 𝐺 ⊂ 𝒮 be such a general goal. We augment our models to

operate not just on 𝒮, but on 𝒮
⋃︀
{𝐺} (which can be simply achieved by, e.g., adding

an indicator dimension). When we encounter transition that ends within some 𝑠′ ∈ 𝐺,

we simultaneously add a transition (𝑠′, 𝐺) to the dataset.

C.2 Proofs

C.2.1 Theorem 4.2.1: Value-Quasimetric Equivalence

Proof of Theorem 4.2.1. We have shown already −𝑉 * ∈ Qmet(𝒮). (See also Propo-

sition B.1.4.)

For any 𝑑 ∈ Qmet(𝒮), define

𝒜 , 𝒮

𝑃 (𝑠, 𝑠act) , 𝛿𝑠act (𝛿𝑥 is the Dirac measure at 𝑥)

𝑅(𝑠, 𝑠′) , −𝑑(𝑠, 𝑠′).

Then the optimal value of (𝒮,𝒜, 𝑃, 𝑅) is −𝑑, regardless of discounting factor (if any).

For the on-policy values, consider action space 𝒜 = {𝑎self , 𝑎next}. Assume that

state-space |𝒮| > 2. Let 𝑠1, 𝑠2, 𝑠3 be three distinct states in 𝒮, all transitions have
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reward −1, and

𝑃 (𝑠1, 𝑎self) = 𝛿𝑠1

𝑃 (𝑠2, 𝑎self) = 𝛿𝑠2

𝑃 (𝑠3, 𝑎self) = 𝛿𝑠3 (𝑎self is always a self-transition)

𝑃 (𝑠1, 𝑎next) = 𝛿𝑠2

𝑃 (𝑠2, 𝑎next) = 𝛿𝑠3

𝑃 (𝑠3, 𝑎next) = 𝛿𝑠1 (𝑎next goes to the next state cyclically)

𝜋(𝑠1; 𝑠2) = 𝛿𝑎next (𝜋 always takes 𝑎next when tasked to go to 𝑠2 from 𝑠1)

𝜋(𝑠2; 𝑠3) = 𝛿𝑎next

𝜋(𝑠1; 𝑠2) = 𝛿𝑎self .

So

−𝑉 𝜋(𝑠1; 𝑠2) = −𝑉 𝜋(𝑠2; 𝑠3) = 1

−𝑉 𝜋(𝑠3; 𝑠1) = ∞,

violating triangle-inequality.

C.2.2 Theorem 4.3.1: Exact Recovery

Proof of Theorem 4.3.1. Since the transition dynamics is deterministic, we can say

that states 𝑠0 is locally connected to state 𝑠1 if ∃𝑎 ∈ 𝒜 such that 𝑃 (𝑠1 | 𝑠0, 𝑎) = 1.

We say a path (𝑠path0 , 𝑠path1 , 𝑠path2 , . . . , 𝑠path𝑇 ) connects 𝑠0 to 𝑠1 if

𝑠path0 = 𝑠0

𝑠path𝑖 is locally connected to 𝑠path𝑖+1 , ∀𝑖 ∈ {0, 1, . . . , 𝑇 − 1}

𝑠path𝑇 = 𝑠1.

303



And we say the total cost of this path is the total rewards over all 𝑇 − 1 transitions,

i.e., 𝑇 − 1.

From the definition of 𝑉 * and Theorem 4.2.1, We know that,

−𝑉 * ∈ Qmet(𝒮)

−𝑉 *(𝑠; 𝑔) = total cost of shortest path connecting 𝑠 to 𝑔, ∀𝑠, 𝑔.

Therefore, the constraints stated in Equation (4.9) is feasible. The rest of this

proof focuses only on 𝑑𝜃’s that satisfy the constraints, which includes −𝑉 *.

Due to triangle inequality, we have ∀𝑠, 𝑔,

𝑑𝜃(𝑠, 𝑔) ≤ total cost of shortest path connecting 𝑠 to 𝑔 = −𝑉 *(𝑠; 𝑔). (C.1)

Therefore,

E𝑠,𝑔[𝑑𝜃(𝑠, 𝑔)] ≤ E𝑠,𝑔[−𝑉 *(𝑠; 𝑔)], (C.2)

with equality iff 𝑑𝜃(𝑠, 𝑔) = −𝑉 *(𝑠; 𝑔) almost surely.

Hence, 𝑑𝜃*(𝑠, 𝑔) = −𝑉 *(𝑠; 𝑔) almost surely.

C.2.3 Theorem 4.3.2: Function Approximation

We first state the more general and formal version of Theorem 4.3.2.

Theorem C.2.1 (Function Approximation; General; Formal). Assume that

𝒮 is compact and 𝑉 * is continuous.

Consider a quasimetric model family that is a universal approximator of Qmet(𝒮)

in terms of 𝐿∞ error (e.g., IQE (Section 3.6) and MRN (Liu et al., 2022)). Concretely,

this means that ∀𝜖 > 0, we can have {𝑑(𝜖)𝜃 }𝜃 such that, there exists some 𝜃 where

∀𝑠0, 𝑠1 ∈ 𝒮,
⃒⃒⃒
𝑑
(𝜖)
𝜃 (𝑠0, 𝑠1) + 𝑉 (𝑠0; 𝑠1)

⃒⃒⃒
≤ 𝜖. (C.3)

Now for some small 𝜖 > 0, consider solving Equation (4.9) over {𝑑(𝜖/2)𝜃 }𝜃 with the
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relaxed constraint that

∀(𝑠, 𝑎, 𝑠′, 𝑟) transition, relu(𝑑
(𝜖/2)
𝜃 (𝑠, 𝑠′) + 𝑟) ≤ 𝜖, (C.4)

then for 𝑠 ∼ 𝑝state, 𝑔 ∼ 𝑝goal, and for all 𝛿 > 0, we have

|𝑑𝜃*(𝑠, 𝑔) + (1 + 𝜖)𝑉 *(𝑠; 𝑔)| ∈ [−𝛿, 0],

with probability 1−𝒪
(︀
𝜖
𝛿
· (−E[𝑉 *])

)︀
.

As a special case with 𝛿 =
√
𝜖, we have

P
[︂⃒⃒
𝑑𝜃*(𝑠, 𝑔) + (1 + 𝜖)𝑉 *(𝑠; 𝑔)

⃒⃒
∈ [−

√
𝜖, 0]

]︂
= 1−𝒪

(︀
−
√
𝜖 · E[𝑉 *]

)︀
, (C.5)

which is exactly Theorem 4.3.2.

Note that the compactness and continuity assumptions ensure that 𝑉 * is bounded.

We start by proving a lemma.

Lemma C.2.2. With the assumptions of Theorem C.2.1, there exists a 𝑑
(𝜖/2)

𝜃†
that

satisfies the constraint with

∀𝑠, 𝑔, 𝑑
(𝜖/2)

𝜃†
(𝑠, 𝑔) ≥ −𝑉 *(𝑠; 𝑔). (C.6)

Proof of Lemma C.2.2. Let the underlying MDP of 𝑉 * be ℳ = (𝒮,𝒜, 𝑃, 𝑅). Con-

sider another MDP ℳ̃ = (𝒮,𝒜, 𝑃,𝑅− 𝜖
2
), with optimal goal-reaching value function

𝑉 * ∈ Qmet(𝒮).

Obviously, transitions (𝑠, 𝑎, 𝑠′, 𝑟) in ℳ bijectively correspond to transitions (𝑠, 𝑎, 𝑠′, 𝑟−
𝜖
2
) in ℳ̃.

For any 𝑠 and 𝑔, let 𝑠 → 𝑠1 → 𝑠2 → · · · → 𝑠𝑛−1 → 𝑔 be the shortest path
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connecting 𝑠 to 𝑔 in ℳ̃ via 𝑛 transitions.

−𝑉 *(𝑠; 𝑔) = total cost of 𝑠→ 𝑠1 → 𝑠2 → · · · → 𝑠𝑛−1 → 𝑔 according to 𝑅− 𝜖

2
as reward

(C.7)

=
𝑛 · 𝜖
2

+ total cost of 𝑠→ 𝑠1 → 𝑠2 → · · · → 𝑠𝑛−1 → 𝑔 according to 𝑅 as reward

(C.8)

≥ 𝑛 · 𝜖
2

+ total cost of shortest path connecting 𝑠 to 𝑔 in ℳ according to 𝑅 as reward

(C.9)

=
𝑛 · 𝜖
2

− 𝑉 *(𝑠; 𝑔). (C.10)

Since 𝑛 > 0 iff 𝑠 ̸= 𝑔, we have

−𝑉 *(𝑠; 𝑔) ≥ 𝜖

2
· 1𝑠 ̸=𝑔 − 𝑉 *(𝑠; 𝑔), ∀𝑠, 𝑔. (C.11)

By universal approximation, there exists 𝑑(𝜖/2)
𝜃†

such that

∀𝑠, 𝑔,
⃒⃒⃒
𝑑
(𝜖/2)

𝜃†
(𝑠, 𝑔) + 𝑉 *(𝑠; 𝑔)

⃒⃒⃒
≤ 𝜖

2
. (C.12)

In particular,

• for 𝑠 ̸= 𝑔, by Equations (C.11) and (C.12), we have

𝑑
(𝜖/2)

𝜃†
(𝑠, 𝑔) ≥ −𝑉 *(𝑠; 𝑔)− 𝜖

2
≥ −𝑉 *(𝑠; 𝑔); (C.13)

• for 𝑠 = 𝑔, by Equation (C.12), we have

𝑑
(𝜖/2)

𝜃†
(𝑠, 𝑔) = 𝑑

(𝜖/2)

𝜃†
(𝑠, 𝑠) = 0 = −𝑉 *(𝑠; 𝑠) = −𝑉 *(𝑠; 𝑔). (C.14)

Hence, 𝑑(𝜖/2)
𝜃†

≥ −𝑉 * globally. Now it only remains to show that 𝑑(𝜖/2)
𝜃†

satisfies the

constraint.
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For any transition (𝑠, 𝑎, 𝑠′, 𝑟 = 𝑅(𝑠, 𝑠′)) in ℳ, by Equation (C.12),

𝑑
(𝜖/2)

𝜃†
(𝑠, 𝑠′) ≤ −𝑉 *(𝑠; 𝑠′) +

𝜖

2
(C.15)

≤ 𝜖

2
−𝑅(𝑠, 𝑠′) +

𝜖

2

(since 𝑠→ 𝑠′ is also a valid path in ℳ̃ with cost 𝜖
2
−𝑅(𝑠, 𝑠′))

= −𝑟 + 𝜖, (C.16)

which means that 𝑑(𝜖/2)
𝜃†

satisfies the constraint.

Hence the desired 𝑑(𝜖/2)
𝜃†

exists.

Now we are ready to prove Theorems 4.3.2 and C.2.1.

Proof of Theorems 4.3.2 and C.2.1. Let 𝑑(𝜖/2)𝜃* be the solution to the relaxed problem.

By the definition of the universal approximator, such solutions exist. Moreover, we

have

∀𝑠, 𝑔, 𝑑
(𝜖/2)
𝜃* (𝑠, 𝑔) ≤ −(1 + 𝜖)𝑉 *(𝑠; 𝑔), (C.17)

by the constraint and triangle inequality.

Define

𝑝 , P[𝑑(𝜖/2)𝜃* (𝑠, 𝑔) < −(1 + 𝜖)𝑉 *(𝑠; 𝑔)− 𝛿]. (C.18)

Then

E[𝑑(𝜖/2)𝜃* (𝑠, 𝑔)] ≤ −(1 + 𝜖)E[𝑉 *(𝑠; 𝑔)]− 𝑝𝛿, (C.19)

where we used Equations (C.17) and (C.18).

Let 𝑑(𝜖/2)
𝜃†

be the quasimetric from Lemma C.2.2. Then, by optimality, we must

have

E[𝑑(𝜖/2)𝜃* (𝑠, 𝑔)] ≥ E[𝑑(𝜖/2)
𝜃†

(𝑠, 𝑔)] ≥ −E[𝑉 *(𝑠; 𝑔)]. (C.20)

Combining Equations (C.19) and (C.20), we have

−(1 + 𝜖)E[𝑉 *(𝑠; 𝑔)]− 𝑝𝛿 ≥ −E[𝑉 *(𝑠; 𝑔)]. (C.21)
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Rearranging the terms, we have

𝑝 ≤ 𝜖

𝛿
· (−E[𝑉 *]). (C.22)

Combining Equations (C.17) and (C.22) gives the desired result.

C.3 Experiment Details and Additional Results

All our results are aggregation from 5 runs with different seeds.

We first discuss general design details that holds across all settings. For task-specific

details, we discuss them in separate subsections below.

QRL. Across all experiments, we use 𝜖 = 0.25, initialize Lagrange multiplier 𝜆 = 0.01,

and use Adam (Kingma and Ba, 2014) to optimize all parameters. 𝜆 is optimized

via a softplus transform to ensure non-negativity. Our latent transition model 𝑇 is

implemented in a residual manner, where

𝑇 (𝑧, 𝑎) , 𝑔𝜑(𝑧, 𝑎) + 𝑧, (C.23)

and 𝑔𝜑 being a generic MLP with weights and biases of the last fully-connected layer

initialized to all zeros. Unless otherwise noted, all networks are implemented as simple

ReLU MLPs. 𝑝state is taken to be the beginning state of a random transition sampled

from dataset / replay buffer. Unless otherwise noted, 𝑝goal is taken to be the resulting

state of a random transition sampled from dataset / replay buffer. For maximizing 𝑑𝜃,

unless otherwise noted, we use the strictly monotonically increasing convex function

𝜑(𝑥) , −softplus(500− 𝑥, 𝛽 = 0.01) = −100× softplus(5− 𝑥

100
). (C.24)

MSG. We follow the authors’suggestions, use 64-critics, and tune the two regularizer

hyperparameters over 𝛼 ∈ {0, 0.1, 0.5, 1} and 𝛽 ∈ {−4,−8}. For other hyperparame-

ters, we use the same default values used in the original paper (Ghasemipour et al.,
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2022).

C.3.1 Discretized MountainCar

Discretization. MountainCar state is parametrized by position ∈ [−1.2, 0.6] and

velocity ∈ [−0.07, 0.07]. For a dimension with values in interval [𝑙, 𝑢], we consider 160

evenly spaced bins of length (𝑢− 𝑙)/159, with centers being

{︂
𝑙 +

𝑢− 𝑙

159
× 𝑘 : 𝑘 = 0, 1, 2, . . . , 159

}︂
. (C.25)

After each reset and transition, we discretize each dimension of the state vector, so

that future dynamics start from the discretized vector. To discretize a value, we find

the bin it falls into, and replace it with the value of bin center. Note that the two

bins at the two ends are centered at 𝑢 and 𝑙, respectively. So the two ends are exactly

represented. Discretizing each dimension this way leads to 160× 160 discrete states.

Data. In MountainCar, the original environment goal (top of hill) is a set of states

with position ∈ [0.5, 0.6] and velocity ∈ [0, 0.07], where the agent is considered reaching

that goal if it reaches any of those states. We adapt QRL and other goal-reaching

methods to support this general goal following the procedure outlined in Appendix C.1.

Specifically, we augment the observation space to include an additional indicator

dimension, which is 1 only when representing this general goal. In summary, any

original (discretized) state 𝑠 , [𝑢, 𝑣] becomes 𝑠 , [𝑢, 𝑣, 0], and 𝐺 , [0.5, 0, 1] refers to

this general goal. All critics and policies now takes in this augmented 3-dimensional

vector as input. For each encountered state 𝑠 that falls in this set, a new transition

(𝑠,𝐺) is added to the offline dataset. The dataset includes 240 such added transitions

and 199,888 transitions generated by running a random actor for 1,019 episodes, where

each episode terminate when the agent reaches top of hill or times out at 250 timesteps.

Evaluation. For each target goal, we evaluate the planning performance starting

from each of 160 × 160 states, with a budget of 200 steps. At each step, the agent
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receives −1 reward until it reaches the goal. The episode return is then averaged over

160× 160 states to compute the statistics. For the task of planning towards 9 specific

states, we say that agent reaches the goal if it reaches a 13×13 neighborhood centered

around the goal state, and average the metrics over 9 target goal states. For QRL

and Q-Learning, we did not train any policy network. Instead, the agents take the

action that maximizes Q value (or minimizes distance) for simplicity.

Goal Distribution. For all multi-goal methods, wherever possible, we adopt a

goal-sampling distribution as following: for 𝑠goal ∼ 𝑝goal,

𝑠goal =

⎧⎪⎨⎪⎩resulting state from a random transition with probability 0.95

[0.5, 0, 1] with probability 0.05.

(C.26)

QRL. We use 3-1024-1024-1024-256 network for 𝑓 and (256+3)-1024-1024-1024-256

residual network for 𝑇 , where 3 represents the one-hot encoding of 3 discrete actions.

For 𝑑𝜃, we use a 256-1024-1024-1024-256 projector followed by an IQE-maxmean head

with 16 components, each of size 32. ℒtransition is optimized with a weight of 75. Our

learning rate is 0.3 for 𝜆 and 5× 10−4 for the model parameters. We use a batch size

of 4096 to train 5× 105 gradient steps. For all parameters except 𝜆, we used cosine

learning rate scheduling without restarting, decaying to 0 at the end of training.

Q-Learning. We use 𝑥-1024-1024-1024-1024-1024-1024-3 networks for vanilla Q-

Learning, where 𝑥 = 3 in the single-goal setting, and 𝑥 = 6 in the multi-goal setting.

The 3 outputs represents estimated Q values for all 3 actions.

Q-Learning with Quasimetrics. We use the same encoder and projector ar-

chitecture as QRL, as well as the same IQE specification. Additionally, to model

the Q-function, we also add a 256-1024-1024-1024-(3×256) transition model (which

outputs the residual for each of the 3 actions), and adopt QRL’s transition loss with

a weight of 5. In other words, we replace the QRL’s value learning objective with

the Q-Learning temporal-difference objective (and keep the transition loss). We use

310



a discount factor of 0.95, and update the target Q model every 2 iterations with a

exponential moving average factor of 0.005. We use a learning rate of 0.001 and a

batch size of 4096 to train 5× 105 gradient steps.

Contrastive RL. We mostly follow the author’s parameters for their offline exper-

iments, using 𝑥-1024-1024-1024-𝑑𝑧 encoders, where 𝑥 = (3 + 3) for the state-action

encoder, 𝑥 = 3 for the goal encoder, and 𝑑𝑧 is the latent dimension. We tune

𝑑𝑧 ∈ {16, 64} and choose 64 for better performance. The policy training is modified

to compute exactly the expected Q-value (rather than using a reparametrized sample)

from the policy’s output action distribution, to accommodate the discrete action space.

Since the dataset is generated from a random actor policy, we disable the behavior

cloning loss. We train over 105 gradient steps using a batch size of 1024. We note that

Contrastive RL requires a specific goal-sampling distribution, which we use instead of

𝑝goal from Equation (C.26).

Contrastive RL with Quasimetrics. We use the same encoder and projector

architecture as QRL, as well as the same IQE specification. Similar to Q-Learning,

we also add a residual transition model, which uses the same (256+3)-1024-1024-256

architecture as QRL’s transition model, and adopt QRL’s transition loss with a weight

of 5. In other words, we replace the QRL’s value learning objective with the contrastive

objective from Contrastive RL (and keep the transition loss). Contrastive RL objective

estimates the on-policy Q-function with an extra goal-specific term determined by 𝑝goal

(Eysenbach et al., 2022). Thus, we also learn a 256-1024-1024-1 model 𝑐(𝑧𝑔), where 𝑧𝑔

is the latent of goal 𝑔. Contrastive RL loss is computed with the sum of 𝑐(𝑧𝑔) and

quasimetric output. Other hyperparameters are identical to the vanilla Contrastive

RL choices.

MSG. We follow the original paper and tune 𝛼 ∈ {0, 0.1, 0.5, 1} and 𝛽 ∈ {−4,−8}.

After tuning, we select 𝛼 = 0.1, 𝛽 = −4 for both the single-goal and multi-goal setting.

For relabelling, we find using random goals hurting performance. Hence, instead of

𝑝goal from Equation (C.26), we use [0.5, 0.5, 1] with probability 0.05, and a future state
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from the same trajectory with probability 0.95, where the future state is taken to be

Δ𝑡 ≥ 1 steps away, where Δ𝑡 ∼ Geometric(0.3).

Diffuser. Diffuser’s training horizon defines the length of trajectory segment used

in training. Any trajectory with length shorter than this number won’t be sampled

at all for training. We tune the training horizon between 16 (which includes almost

all training trajectories) and 200 (which excludes shorter trajectories from training

but may better capture long-term dependencies), and choose 16 due to its better

performance in both evaluations.

C.3.2 Offline d4rl maze2d

Evaluation. For each method, we evaluate both single-goal and multi-goal planning

over 100 episodes.

QRL. We use 4-1024-1024-1024-256 network for 𝑓 and (256+2)-1024-1024-1024-256

residual network for 𝑇 , where 2 is the action dimension. For 𝑑𝜃, we use a 256-1024-

1024-2048 projector followed by an IQE-maxmean head with 64 components, each

of size 32. ℒtransition is optimized with a weight of 1. Our learning rate is 0.01 for

𝜆, 5 × 10−4 for the critic parameters, and 3 × 10−5 for the policy parameters. We

use a batch size of 4096 to train 2× 105 gradient steps. Inspired by Contrastive RL

(Eysenbach et al., 2022), we augment policy training with an additional behavior

cloning loss of weight 0.05 (towards a goal that is Δ𝑡 ≥ 1 steps in the future from the

same trajectory, for Δ𝑡 ∼ Geometric(0.99)).

Contrastive RL. We mostly follow the author’s parameters for their offline exper-

iments, using 𝑥-1024-1024-1024-16 encoders, where 𝑥 = (4 + 2) for the state-action

encoder, and 𝑥 = 4 for the goal encoder, and 𝑑𝑧 is the latent dimension, as well as

a behavior cloning loss of weight 0.05. We train over 1.5× 105 gradient steps using

a batch size of 1024. We note that Contrastive RL requires a specific goal-sampling

distribution, which we use instead of 𝑝goal from Equation (C.26).
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MSG. For single-goal results, we report the evaluations from the original paper.

For multi-goal tasks, we use the same architectures with relabelling, and tune 𝛼 ∈

{0, 0.1, 0.5, 1} and 𝛽 ∈ {−4,−8}, following the procedure from original paper. After

tuning, we use 𝛼 = 0.1 and 𝛽 = −8 for the large maze, 𝛼 = 0.5 and 𝛽 = −4 for the

medium maze, and 𝛼 = 0.1 and 𝛽 = −8 for the umaze maze. For relabelling, we sample

goal state a future state from the same trajectory, where the future state is taken to

be Δ𝑡 ≥ 1 steps away, where Δ𝑡 ∼ Geometric(0.3).

MPPI with QRL Value. We run MPPI in the QRL’s learned dynamics and value

function with a planning horizon of 5 steps, 10,000 samples per step, and the QRL Q-

function (via the QRL dynamics and value function) as reward in each step. The noise

variance to sample and explore actions is 𝜎2 = 1. We experimented 𝜆 ∈ {0.1, 0.01}, a

regularizer penalizing the cost of control noise, and use 𝜆 = 0.01 due to its slightly

superior performance.

Diffuser. We strictly follow the original paper’s parameters for maze2d experiments.

For planning with sampled actions, each Diffuser sample yields many actions, so we

replan after using up all previously sampled actions (similar to open-loop planning).

In our experience, replanning at every timestep is extremely computationally costly

without observed improvements. For QRL value planning, we guide Diffuser sampling

for minimizing the learned quasimetric distance towards goal state (in addition to its

existing goal-conditioning) with a weight of 0.1 over 4 guidance steps at each sampling

iteration. Since each Diffuser sample is a long-horizon trajectories refined over many

iterations, guiding at each timestep of the trajectory is computationally expensive.

Therefore, we gather state-action pairs from every 5 timesteps as well as the last step

of the trajectory, and feed these pairs into learned QRL value function to compute

the average QRL values as guidance.
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Figure C-1: Online learning performance on GCRL benchmarks, including an alternative
method to integrate quasimetrics in DDPG and a variant of Contrastive RL trained with two
critics and exploration action noise on state-based settings. No method has access to ground
truth reward function. QRL still consistently outperforms the baseline methods, learning
both faster and better. FetchSlide with image observation is not shown because no method
reaches a non-trivial success rate. See Appendix C.3.3 for details of the additional baselines.

C.3.3 Online GCRL

Environment. For FetchReach and FetchPush, we strictly follow Contrastive RL

experimental setups (Eysenbach et al., 2022) to generate initial and goal states/images.

The image observations are RGB with 64× 64 resolution. For FetchSlide, we adopt

a similar strategy and generate goal states where object position dimensions are set

to the target location and other dimensions are set to zeros. We are unable to get

any method to reach a non-trivial success rate on FetchSlide with image observation

despite tuning hyperparamteres and image rendering. We thus omit this setting in

results.

Evaluation. We evaluate each method for 50 episodes every 2000 environment steps

(i.e., 40 episodes). Following standard practice, we mark an episode as successful if the

agent completes the task at any timestep within the time limit (50 steps). For clearer

visualizations in Figures 4-5 and C-1, the success rates curves are smoothed with a

sliding window of length 5 before gathering across 5 seeds, similar to visualizations in

(Liu et al., 2022). For comparing sample efficiencies between Contrastive RL and QRL,

we look at the smoothed success rates from both methods, find the sample size where

QRL first exceeds Contrastive RL’s final performance at 106 samples, and compute

the sample size ratio.
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Processing Image Observations. To process image inputs, all compared methods

use the same backbone convolutional architecture from (Mnih et al., 2013) to encode

the input image into a 1024-dimensional flat vector. We adopt this approach from

Contrastive RL (Eysenbach et al., 2022). For different modules in a method, each

module uses an independent copy of this backbone (of same architecture but different

set of parameters). For modules that takes in two observations (e.g., policy network

in all methods and monolithic Q-functions in vanilla DDPG), the same backbone

processes each input into a flat vector, and the concatenated 2048-dimensional vector

is fed into later parts of the module (which is usually an MLP). Other modules

only take in a single observation and simply maps the processed 1024-dimensional

vector to the output in a fashion similar to the fully-connected head of convolutional

nets (i.e., passing through an activation function and then an MLP). In architecture

descriptions below, we omit this backbone part for simplicity, and use 𝑥 to denote

the state dimension for state-based observations and backbone output dimension (i.e.,

1024) for image-based observations .

QRL (State-based Observations). We use a 𝑥-512-512-128 network for 𝑓 and a

(128+4)-512-512-128 residual network for 𝑇 , where 4 is the action dimension. For 𝑑𝜃, we

use a 128-512-2048 projector followed by an IQE-maxmean head with 64 components,

each of size 32. We use 𝑥-512-512-8 network for policy, where 𝑥 is the input size

and 8 parametrizes a tanh-transformed diagonal Normal distribution. ℒtransition is

optimized with a weight of 0.2. Our learning rates are 0.01 for 𝜆, 1 × 10−4 for the

model parameters, and 3× 10−5 for the policy parameters. We use a batch size of 256

in training. We prefill the replay buffer with 200 episodes from a random actor, and

then iteratively perform (1) generating 10 rollouts and (2) optimizing QRL objective

for 500 gradients steps. We use 𝒩 (0, 0.32)-perturbed action noise in exploration. For

the adaptive entropy regularizer (Haarnoja et al., 2018), we regularize policy to have

target entropy −dim(𝒜), where the entropy regularizer weight is initialized to be 1

and optimized in log-space with a learning rate of 3× 10−4. Since the environment has

much shorter horizon (each episodes ends at 50 timesteps), we instead use a different
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affine-transformed softplus for maximizing 𝑑𝜃, where 𝜑(𝑥) , −softplus(15−𝑥, 𝛽 = 0.1).

QRL (Image-based Observations). All settings are the same as QRL for state-

based observations except a few changes:

• We use the convolutional backbone followed by a 𝑥-512-128 network for encoder

𝑓 .

• We optimize ℒtransition with an relaxed weight of 0.1 (since the dynamics aren’t

fully deterministic).

• We update the models less frequently with 125 gradient steps every 10 roll-

outs. Contrastive RL uses the same reduced update frequency for image-based

observations (Eysenbach et al., 2022), which we observe also has benefits for

QRL1.

Contrastive RL. We strictly follow the original paper’s experiment settings (Ey-

senbach et al., 2022), which does not use two critics or action noise for exploration,

and only uses entropy regularizer for image-based observations. For a comparison, we

also run Contrastive RL with these techniques added on the state-based environments.

As shown in Figure C-1, while they do sometimes improve performance, they do not

completely explain the gap between QRL and Contrastive RL. Hence, the improvement

of QRL over Contrastive RL indeed (partly) comes from fundamental algorithmic

differences. Since Contrastive RL estimates on-policy values, it could be more sensitive

adding exploration noises, which degrades the dataset. QRL, however, is conceptually

exempt from this issue, since it estimates optimal values.

Goal-Conditioned Behavior Cloning (GCBC). We strictly follow the hyper-

parameter setups for the GCBC baseline in the Contrastive RL paper (Eysenbach

et al., 2022).

1This is potentially related to the lost of capacity phenomenon observed generally in RL algorithms
(D’Oro et al., 2023)
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DDPG + HER. We mostly follow the experiment setup in the MRN paper (Liu

et al., 2022). However, we do not give HER access to reward functions for fair

comparison. Instead, HER relabels transition rewards based on whether the state

equals the target goal state, which is exactly the same reward structure other method

uses (QRL, Contrastive RL and GCBC).

DDPG + HER + Quasimetrics (Method by Liu et al. (2022)). We strictly

follow the MRN paper (Liu et al., 2022) to modify DDPG to include quasimetrics,

which is slightly different from our modifications to Q-Learning on offline MountainCar,

but was also shown to be empirically beneficial in online learning (Liu et al., 2022).

We follow Liu et al. (2022) for MRN hyperparameters, and use the same IQE hyper-

parameters as QRL.

DDPG + HER + Quasimetrics (Another method to add quasimetrics).

We show additional results comparing QRL to a different approach to integrate

quasimetrics into DDPG. This approach is different from the one by Liu et al. (2022)

but similar to our modifications to Q-Learning on offline MountainCar that attain

good performance in that task. We adapt the architecture choices by Liu et al. (2022)

and QRL. Specifically, we use a 𝑥-512-512-128 network for encoder 𝑓 and (128+4)-512-

512-128 residual network for 𝑇 . For 𝑑𝜃, we use a 128-2048-2048-2048 projector followed

by an IQE-maxmean head with 64 components, each of size 32. We adopt QRL’s

transition loss with a weight of 5. In other words, we replace the QRL’s value learning

objective with the DDPG temporal-difference objective (and keep the transition loss).

All other hyperparameters follow the same choices in method by Liu et al. (2022).

This approach performs extremely poorly on this more challenging set of environments,

suggesting that it is unable to scale to more complex continuous-control settings.

As shown in Figure C-1, QRL greatly outperforms both approaches to integrate

DDPG and quasimetrics, showing consistent advantage of the QRL objective over

Q-Learning’s temporal-difference objective.
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Appendix D

Details and Additional Discussions

for Chapter 5

D.1 Denoised MDP Discussions

D.1.1 Loss Derivation

To apply our mutual information regularizer 𝐼(𝑥; 𝑠 | 𝑎), we can consider a form using

another variational distribution 𝜌 (see, e.g., Poole et al. (2019)),

𝐼(𝑥; 𝑠 | 𝑎) = min
𝜌

E𝑎E𝑝𝜃(𝑠|𝑎) [𝐷KL(𝑝𝜃(𝑥 | 𝑠,𝑎) ‖ 𝜌(𝑥 | 𝑎))]

≈ min
𝜌

E𝑎E𝑞𝜓(𝑠|𝑎) [𝐷KL(𝑞𝜓(𝑥 | 𝑠,𝑎) ‖ 𝜌(𝑥 | 𝑎))]

(assume 𝑞𝜓 is roughly the posterior of 𝑝𝜃)

= min
𝜃′

ℒKL-𝑥(𝜓, 𝜃′). (D.1)

The assumption that 𝑞𝜓 is roughly the posterior of 𝑝𝜃 is acceptable because it is the

natural consequence of optimizing the variational MLE objective in Equation (5.1)

over 𝜃, 𝜓.

Alternatively, we can consider the MI defined by a joint conditional distribution

𝑃 (𝑥, 𝑠 | 𝑎) not from the forward model 𝑝𝜃, but from the data distribution and posterior

model 𝑞𝜓(𝑥 | 𝑠,𝑎). This is also sensible because the variational MLE objective in
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Equation (5.1) optimizes for compatible 𝑝𝜃 and 𝑞𝜓 that both fit data and consistently

describe (conditionals of) the same underlying distribution. Thus regularizing either

can encourage a low MI. This approach leads to exactly Equation (D.1), without

approximation.

Then, the total loss in Equation (5.3) from combining Equations (5.1) and (D.1)

is given by

min
𝜃

ℒMLE(𝜃) + 𝑐 · 𝐼(𝑥; 𝑠 | 𝑎)

= min
𝜃,𝜃′,𝜓

ℒrecon(𝜃, 𝜓) + ℒKL-𝑥(𝜃, 𝜓) + ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧 + 𝑐 ·+ℒKL-𝑥(𝜃′, 𝜓)

=min
𝜃,𝜓

ℒrecon(𝜃, 𝜓) + (1 + 𝑐) · ℒKL-𝑥(𝜃, 𝜓) + ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧(𝜃, 𝜓).

D.1.2 Discussions

We discuss some algorithmic choices of Denoised MDP below. Specific implementation

details (e.g., architectures) can be found at Appendix D.2.1.

Posterior distributions of 𝑟𝑥 and 𝑟𝑦. The 𝑝𝜃 reward distributions 𝑝𝜃(𝑟𝑥 | 𝑥𝑡) and

𝑝𝜃(𝑟𝑦 | 𝑦𝑡) are modelled via Gaussians (as is done usually in world models, such as

Dreamer (Hafner et al., 2019a)). By the transition structure of Denoised MDPs, these

distributions are inherently independent. Recall that 𝑟 = 𝑟𝑥 + 𝑟𝑦. Therefore, we can

easily compute the distribution of 𝑝𝜃(𝑟 | 𝑥𝑡, 𝑦𝑡) and its log likelihoods. This enables

easy optimization of the variational MLE objective, without requiring the posterior

model to also infer 𝑟𝑥 and 𝑟𝑦 from observed 𝑟 subject to the addition relation.

Partial observability. Sections 5.2 and 5.3 discussions are mostly based in the fully

observable setting. Yet most benchmarks and real-world tasks are partially observable,

e.g., robot joint speeds that can not be inferred from a single frame. Fortunately,

the transition models used in Denoised MDP are fully capable of handle such cases,

as long as the encoder 𝑞𝜓 is not deterministic and the observation model 𝑝𝜃(𝑠 | . . . )

does not have the block structure (Du et al., 2019) (which would make 𝑥, 𝑦, 𝑧 fully

determined from 𝑠). In practice, we let both components to be generic conditional
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Ctrl + Rew Ctrl + Rew Ctrl + Rew Ctrl + Rew

DMC

Noiseless Agent — — —

Video Background Agent — — Background

Video Background
+ Noisy Sensor Agent — Background —

Video Background
+ Camera Jittering Agent — —

Background,
Jittering camera

RoboDesk
Agent, Button,
Light on desk,

Green hue of TV

Blocks on desk,
Handle on desk,

Other movable objects

TV content,
Button sensor noise

Jittering and flickering environment lighting,
Jittering camera

Table D.1: Categorization of various information in the evaluated environments.

distributions (parameterized by regular deep neural networks). Therefore, Denoised

MDP does not require full observability.

Hyperparameter choice. The loss in Equation (5.4) has two hyperparameters: 𝛼 ∈

(0,∞) and 𝛽 ∈ (0, 1). To maintain relative ratio with the observation reconstruction

loss, we recommend scaling 𝛼 roughly proportionally with dimensionality of the

observation space, as is done in our experiments presented in this chapter. A smaller 𝛽

means stronger regularization. Therefore, 𝛽 can be chosen based on training stability

and the level of noise distractors in the task.

D.2 Experiment Details

All code (including code for our environment variants and code for our Denoised MDP

method) will be released upon publication.

D.2.1 Implementation Details

Environments and Tasks

In all environments, trajectories are capped at 1000 timesteps. Table D.1 shows a

summary of what kinds of information exist in each environment.
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DeepMind Control Suite (DMC). Our Video Background implementation

follows Deep Bisimulation for Control (Zhang et al., 2020a) on most environments,

using Kinetics-400 grayscale videos (Smaira et al., 2020), and replacing pixels where

blue channel is strictly the greatest of three. This method, however, does not cleanly

remove most of background in the Walker Walk environment, where we use an

improved mask that replaces all pixels where the blue channel is among the greatest

of three. For Camera Jittering, we shift the observation image according to a

smooth random walk, implemented as, at each step, Gaussian-perturbing acceleration,

decaying velocity, and adding a pulling force if the position is too far away from origin.

For Sensor Noise, we select one sensor, and perturb it according to intensity of a

patch of the natural video background (i.e., adding average patch value − 0.5). We

perturb the speed sensor for Cheetah Run, the torso_height sensor for Walker Walk,

and the normalized finger_to_target_dist sensor for Reacher Easy. These sensor

values undergo non-linear (mostly piece-wise linear) transforms to compute rewards.

While they can not be perfectly modelled by additive reward noise, such a model is

usually sufficient in most cases when the sensor values are not too extreme and stay

in one linear region.

RoboDesk. We modify the original RoboDesk environment by adding a TV screen

and two neighboring desks. The TV screen places (continuously horizontally shifting)

natural RGB videos from the Kinetics-400 dataset (Smaira et al., 2020). The

environment has three light sources from the above, to which we added random

jittering and flickering. The viewing camera is placed further to allow better view of

the noise distractors. Resolution is increased from 64× 64 to 96× 96 to compensate

this change. Camera jittering is implemented by a 3D smooth random walk. Finally,

the button sensor (i.e., detected value of how much the button is pressed) is also offset

by a random walk. Each of the three button affects the corresponding light on the

desk. Additionally, pressing the green button also shifts the TV screen content to a

green hue. Following RoboDesk reward design, we reward the agent for (1) placing

arm close to the button, (2) pressing the button, and (3) how green the TV screen
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content is.

RoboDesk Joint Position Regression Datasets. To generate training and test set,

we use four policies trained by state-space SAC at different stages of training (which is

not related to any of the compared methods) and a uniform random actor, to obtain

five policies of different qualities. For each policy, we sample 100 trajectories, each

containing 1001 pairs (from 1000 interactions) of image observation and groundtruth

joint position (of dimension 9). This leads to a total of 500.5× 103 samples from each

policy. From these, 100× 103 samples are randomly selected as test set. Training sets

of sizes 5× 103, 10× 103, 25× 103, 50× 103, 100× 103, 150× 103 are sampled from the

rest. For all test sets and training sets, we enforce each policy to strictly contribute

an equal amount.

Model Learning Methods

For all experiments, we let the algorithms use 106 environment steps. For PI-SAC

and CURL, we follow the original implementations (Laskin et al., 2020a; Lee et al.,

2020) and use an action repeat of 4 for Cheetah Run and Reacher Easy, and an action

repeat of 2 for Walker Walk. For Denoised MDP, Dreamer, TIA and DBC, we always

use an action repeat of 2, following prior works (Hafner et al., 2019a; Fu et al., 2021;

Zhang et al., 2020a).

Denoised MDP, Dreamer, and TIA. Both Dreamer and TIA use the same

training schedule and the Recurrent State-Space Model (RSSM) as the base architecture

(Hafner et al., 2019b). Following them, Denoised MDP also uses these components,

and follow the same prefilling and training schedule (see Dreamer (Hafner et al., 2019b)

for details). These three model learning methods take in 64× 64 RGB observations

for DMC, and 96 × 96 RGB observations for RoboDesk. Dreamer only implements

encoder and decoder for the former resolution. To handle the increased resolution,

we modify the 64× 64 architectures and obtain convolutional encoder and decoder

shown in Tables D.2 and D.3. For fair comparison, we ensure that each method has
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Operator
Input
Shape

Kernel
Size Stride Padding

Input [3, 96, 96] — — —

Conv. + ReLU [𝑘, 47, 47] 4 2 0

Conv. + ReLU [2𝑘, 22, 22] 4 2 0

Conv. + ReLU [4𝑘, 10, 10] 4 2 0

Conv. + ReLU [8𝑘, 4, 4] 4 2 0

Conv. + ReLU [8𝑘, 2, 2] 3 1 0

Reshape + FC [𝑚] — — —

Table D.2: Encoder architecture for (96×
96)-resolution observation. The output of
this encoder is then fed to other network
for inferring posteriors. 𝑚 and 𝑘 are two
architectural hyperparameters. 𝑚 con-
trols the output size (unrelated to the
actual latent variable sizes). 𝑘 controls
the network width.

Operator
Input
Shape

Kernel
Size Stride Padding

Input [input_size] — — —

FC + ReLU + Reshape [𝑚, 1, 1] — — —

Conv. Transpose + ReLU [4𝑘, 3, 3] 5 2 0

Conv. Transpose + ReLU [4𝑘, 9, 9] 5 2 0

Conv. Transpose + ReLU [2𝑘, 21, 21] 5 2 0

Conv. Transpose + ReLU [𝑘, 46, 46] 6 2 0

Conv. Transpose + ReLU [3, 96, 96] 6 2 0

Table D.3: Decoder architecture for (96 × 96)-
resolution observation. 𝑚 and 𝑘 are two archi-
tectural hyperparameters. 𝑚 controls width the
fully connected part. 𝑘 controls width of the con-
volutional part. They are the same values as in
Table D.2.

roughly equal number of parameters by using different latent variable sizes, encoder

output sizes (𝑚 of Table D.2) and convolutional net widths (𝑘 of Table D.3). Details

are shown in Table D.4.

KL clipping (free nats). For Denoised MDP, we follow Dreamer (Hafner et al.,

2019b,a) and TIA (Fu et al., 2021), and allow 3 free nats for the ℒKL-𝑥 term. In other

words, for each element of a batch, we do not optimize the KL term if it is less than 3

(e.g., implemented via clipping). However, we do not allow this for the ℒKL-𝑦 and ℒKL-𝑧

terms, as these variables are to be discarded and information is not allowed to hide in

them unless permitted by the structure. An alternative strategy, which we find also em-

pirically effective, is to consider ℒKL-𝑥 = 𝛽 · ℒKL-𝑥⏟  ⏞  
VAE KL term

+(1− 𝛽) · ℒKL-𝑥⏟  ⏞  
MI regularizer term

, and to allow free

nats only for the first term that is a part of the variational model fitting objective. All

results presented in this chapter use the first strategy. Both strategies are implemented

in our open source code repository: github.com/facebookresearch/denoised_mdp.

Policy Optimization Algorithms Used with Model Learning

Backpropagate via Dynamics. We use the same setting as Dreamer (Hafner

et al., 2019a), optimizing a 𝜆-return over 15-step-long rollouts with 𝜆 = 0.95, clipping
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DMC RoboDesk

Latent Sizes 𝑚 𝑘
Total Number
of Parameters Latent Sizes 𝑚 𝑘

Total Number
of Parameters

Dreamer (220 + 33) 1024 32 7,479,789 (220 + 33) 1024 32 6,385,511

TIA (120 + 20) + (120 + 20) 490 24 7,475,567 (120 + 20) + (120 + 20) 490 24 6,384,477

Denoised MDP (120 + 20) + (120 + 20) 1024 32 7,478,826 (120 + 20) + (120 + 20) 1024 32 6,384,248

Table D.4: Specific architecture parameters for model learning methods. Since RSSM
uses a deterministic part and a stochastic part to represent each latent variable, we use
(deterministic_size + stochastic_size) to indicate size of a latent variable. TIA and
Denoised MDP have more than one latent variable. Note that while TIA has lower 𝑚 and
𝑘, it has multiple encoder and decoders, whereas Dreamer and Denoised MDP only have
one encoder and one decoder. The total number of parameters is measured with the actor
model, but without any additional components from policy optimization algorithm (e.g.,
critics in SAC). Total number of parameters is lower for RoboDesk as the encoder and decoder
architecture is narrower than those of DMC for the purpose of reducing memory usage,
despite with a higher resolution.

gradients with norm greater than 100. TIA uses the same strategy, except that it

groups different models together for gradient clipping. We strictly follow the official

TIA implementation.

Latent-Space SAC. We use the regular SAC with automatic entropy tuning,

without gradient clipping. This works well for almost all settings, except for Walker

Walk variant of DMC, where training often collapses after obtaining good return,

regardless of the model learning algorithm. To address instability in this case, we

reduce learning rates from 3× 10−4 to 1× 10−4 and clip gradients with norm greater

than 100 for all latent-space SAC run on these variants.

Model-Free Methods

DBC. For DMC, we used 84×84-resolution observation following original work (even

though other methods train on 64× 64-resolution observations). For RoboDesk, DBC

uses the encoder in Table D.2 for 96× 96-resolution observation, for fair comparison

with other methods. Following the original work, we stack 3 consecutive frames to

approximate the required full observability. In the robot arm joint position regression

experiment Section 5.5.1, DBC encoders also see stacked observations. For DMC

evaluations, we use the data provided by Zhang et al. wherever possible, and run the
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official repository for other cases.

State-Space SAC. The state space usually contains robot joint states, including

position, velocity, etc. For DMC, when Sensor Noise is present, this is not the true

optimal state space, as we do not supply it with the noisy background that affects

the noisy reward. However, it still works well in practice. For RoboDesk, the TV’s

effect on reward is likely stronger and direct state-space SAC fails to learn. Since

this evaluation is to obtain a rough “upper bound”, we train state-space SAC with

a modified reward with less noise— the agent is rewarded by pressing the button,

independent of the TV content. This still encourages the optimal strategy of the task

allows achieving good policies.

Non-RL methods

Contrastive Learning. We used the Alignment+Uniformity contrastive learning

loss from Wang and Isola (2020). The hyperparameters and data augmentations strictly

follow their experiments on STL-10 (Coates et al., 2011), which also is of resolution

96 × 96. The exact loss form is ℒalign(𝛼 = 2) + ℒuniform(𝑡 = 2), a high-performance

setting for STL-10.

D.2.2 Compute Resources

All our experiments are run on a single GPU, requiring 8GB memory for DMC tasks,

and 16GB memory for RoboDesk tasks. We use NVIDIA GPUs of the following types:

1080 Ti, 2080 Ti, 3080 Ti, P100, V100, Titan XP, Titan RTX. For MuJoCo (Todorov

et al., 2012), we use the EGL rendering engine. Training time required for each run

heavily depends on the CPU specification and availability. In general, a Denoised

MDP run needs 12 ∼ 36 hours on DMC and 24 ∼ 50 hours on RoboDesk. TIA uses

about 1.5× of these times, due to the adversarial losses. For a comparison between

the two Denoised MDP variants, running the same DMC task on the same machine,

the Figure 5-2b variant used 23 hours while the Figure 5-2c variant used 26 hours.
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D.2.3 Visualization Details

Visualizations of components in learned models. We use different methods

to visualize signal and noise information learned by TIA and Denoised MDP in

Figures 5-4 and 5-7. For TIA, we used the reconstructions from the two latent (before

mask-composing them together as the full reconstruction). For Denoised MDP, we

only have one decoder (instead of three for TIA), and thus we decode (𝑥𝑡, const)

and (const, 𝑦𝑡) to visualize information contained in each variable, with const chosen

by visual clarity (usually as value of the other variable at a fixed timestep). Due

to the fundamental different ways to obtain these visualizations, in DMC, TIA can

prevent the agent from showing up in noise visualizations, while Denoised MDP cannot.

However, as stated in Section 5.5.2, our focus should be on what evolves/changes in

these images, rather than what is visually present, as static components are essentially

not modelled by the corresponding transition dynamics. Visualizations in Figures 5-4

and 5-7 use trajectories generated by a policy trained with state-space SAC. To

obtain diverse behaviors, policy outputs are randomly perturbed before being used as

actions. From the same trajectory, we use the above described procedure to obtain

visualizations. The specific used trajectory segments are chosen to showcase both the

modified environment and representative behavior of each method. Please see the

supplementary video for clearer visualizations.

D.2.4 RoboDesk Result Details

Environment modifications. The agent controls a robotic arm placed in front of

a desk and a TV, and is tasked to push down the green button on the desk, which

turns on a small green light and makes the TV display have a green hue. The intensity

of the TV image’s green channel is given to the agent as part of their reward, in

addition to distance between the arm to the button, and how much the button is

pressed. Additionally, the environment contains other noise distractors, including

moveable blocks on the desk (Ctrl + Rew), flickering environment light and camera

jittering (Ctrl + Rew), TV screen hue (Ctrl + Rew), TV content (Ctrl + Rew),
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Figure D-1: Effect of weight decay on RoboDesk
joint position regression. The curves show final
test MSE for various training set sizes. Weight
decay generally helps when finetuning from a
pretrained encoder, but hurts when training
from scratch.
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Figure D-2: Performance of all TIA settings
on RoboDesk joint position regression. Only
using the signal encoder is necessary for good
performance.
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Figure D-3: Training curve comparisons for the RoboDesk joint position regression task across
many training set sizes.

and noisy button sensors (Ctrl + Rew).

Denoised MDP hyperparameters. RoboDesk has roughly twice as many pixels

as DMC has. For Denoised MDP, we scale 𝛼 with the observation space dimensionality

(see Section 5.3) and use 𝛼 = 2, with a fixed 𝛽 = 0.125. When using the alternative

KL free nats strategy discussed in Appendix D.2.1 (results not shown in this chapter),

we find 𝛼 = 1 and 𝛽 = 0.25 also effective.

TIA hyperparameters. We follow recommendations in the TIA paper, setting

𝜆Radv = 25,000 to match reconstruction loss in magnitude, and setting 𝜆𝑂𝑠 = 2 where

training is stable.

Robot Arm Joint Position Regression.

Training details. For this task, we jointly train the pre-trained backbone and a

three-layer MLP head that has 256 hidden units at each layer, with a learning rate

328



0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 2

10 1
Te

st
 S

et
 M

SE

Ours (Stacked Frames)
Ours (Single Frame)
DBC (Stacked Frames)
PI-SAC (Stacked Frames)
CURL (Stacked Frames)
From Scratch (Stacked Frames)

Figure D-4: Performance comparison of fine-
tuning from Denoised MDP encoders and
frame-stacked encoders that take in 3 con-
secutive frames, on RoboDesk joint position
regression. For Denoised MDP and training
from scratch, the encoders take in only a
single frame and are applied for each of the
frame, with output concatenated together
before feeding to the prediction head.
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Figure D-5: Performance of all DBC settings
on RoboDesk joint position regression. Using
the output features (after layer normaliza-
tion) is necessary for good performance.
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Figure D-6: Performance of all CURL set-
tings on RoboDesk joint position regression.
Using the output features (after layer normal-
ization) is necessary for good performance.
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Figure D-7: Performance of all PI-SAC set-
tings on RoboDesk joint position regression.
Using the activations before layer normaliza-
tion gives best performance.

of 8× 10−5. For finetuning from pretrained encoders, we follow common finetuning

practice and apply a weight decay of 3× 10−5 whenever it is helpful (all cases except

CURL and training from scratch). See Figure D-1 for comparisons for weight decay

options over all methods.

• For model-based RL, we take encoders trained with backpropagating via dynam-

ics as the policy optimization algorithm.

• In training the contrastive encoder, for a (more) fair comparison with RL-trained

encoders that are optimized over 106 environment steps, we train contrastive

encoders on 106 samples, obtained in the exact same method of the training sets

of this task. In a sense, these contrastive encoders have the advantage of training
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on the exact same distribution, and seeing more samples (since RL-trained

encoders use action repeat of 2 and thus only ever see 0.5× 106 samples).

• TIA has two sets of encoders. Using concatenated latents from both unfortunately

hurts performance greatly (see Figure D-2). So we use only the encoder for the

signal latent.

We also compare training speeds over a wide range of training set sizes in Figure D-3.

Denoised MDP encoders lead to faster and better training in all settings.

Additional comparison with frame-stacking encoders. Other pretrained en-

coders (DBC, CURL and PI-SAC) take in stacked 3 consecutive frames, and are not

directly comparable with the other methods. To compare, we also try running Denoised

MDP encoders on the 3 consecutive frames, whose feature vector is concatenated

before feeding into the head. The result in Figure D-4 shows that our encoder outper-

forms all but PI-SAC encoders. Finally, for DBC, CURL and PI-SAC, we attempted

evaluating intermediate features, features before the final layer normalization, and the

output space, and find the last option best-performing for DBC and CURL, and the

second option best-performing for PI-SAC (see Figures D-5 to D-7). Therefore, we

use these respective spaces, which arguably gives a further edge to these methods, as

we essentially tune this additional option on test results. Notably, these respective

choices are often the only one achieving relatively good performance, highlighting the

necessity of tuning for these methods.

D.2.5 DeepMind Control Suite (DMC) Result Details

Full policy optimization results. Figure D-8 presents the full results on each

DMC environment (task + variant). For environment, a comparison plot is made

based on which policy learning algorithm is used with the model learning method

(with model-free baselines duplicated in both). Such separation is aimed to highlight

the performance difference caused by model structure (rather than policy learning

algorithm). Across most noisy environments, Denoised MDP performs the best. It
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also achieves high return on noiseless environments.

Visualization of learned models. Figure D-9 is the extended version of Figure 5-

7 in main text, with full reconstructions from all three models. Please see the

supplementary video for clearer visualizations.

Comparison between Denoised MDP variants. We compare the two Denoised

MDP variants based Figures 5-2b and 5-2c on Cheetah Run environments with policy

trained by packpropagating via learned dynamics. The comparison is shown in the top

row of Figure D-8, where we see the Figure 5-2b variant often performing a bit better.

We hypothesize that this may due to the more complex prior and posterior structure

of Figure 5-2c, which may not learn as efficiently. This also makes Figure 5-2c variant

needing longer (wall-clock) time to optimize, as mentioned above in Appendix D.2.2.

TIA hyperparameters and instability. We strictly follow recommendations of

the original paper, and use their suggested value for each DMC task. We also note

that TIA runs sometimes collapse during training, leading to sharp drops in rewards.

After closely inspecting the models before and after collapses, we note that in many

cases, such collapses co-occur with sudden spikes in TIA’s reward disassociation loss,

which is implemented as an adversarial minimax loss, and the noise latent space

instantly becomes degenerate (i.e., not used in reconstruction). We hypothesize that

this adversarial nature can cause training instability. However, a few collapses do

not co-occur with such loss spikes, which maybe alternatively due to that TIA model

structure cannot model the respective noise types and that better fitting the model

naturally means a degenerate noise latent space.

PI-SAC hyperparameters. For each task, we use the hyperparameters detailed

in the original paper (Lee et al., 2020). PI-SAC is usually run with augmentations.

However, unlike CURL, augmentation is not an integral part of the PI-SAC algorithm

and is completely optional. For a fair comparisons with other methods and to highlight
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the effect of the predictive information regularizer, the main mechanism proposed by

PI-SAC, we do not use augmentations for PI-SAC.

Denoised MDP hyperparameters. For DMC, we always use fixed 𝛼 = 1. 𝛽 can

be tune according to amount of noises in environment, and to training stability. In

Figure D-10, we compare effects of choosing different 𝛽’s. On noiseless environments,

larger 𝛽 (i.e., less regularization) performs often better. Whereas on noisy environ-

ments, sometimes stronger regularization can boost performance. However, overall

good performance can be obtained by usually several 𝛽 values. In Table D.5, we

summarize our 𝛽 choices for each environment in Table D.5.
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Figure D-8: Complete policy optimization results on DMC. Each plot focuses on a single
task variant, showing total episode return versus environment steps taken. For three model-
based approaches, we use two policy optimization choices to train on the learned model:
(top half) backpropagate via learned dynamics and (bottom half) SAC on the learned
MDP. We also compare with DBC, a model-free baseline. For an “upper bound” (not
plotted due to presentation clarity), SAC on true state-space (i.e., optimal representation)
in 106 environment steps reaches episode return ≈ 800 on Cheetah Run variants, ≈ 980 on
Walker Walk variants, and ≈ 960 on Reacher Easy variants. CURL’s specific augmentation
choice (random crop) potentially helps significantly for Reacher Easy (where the reacher and
the target appear in random spatial locations) and Camera Jittering. However, unlike
Denoised MDP, it does not generally perform well across all environments and noise variants.
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Env. 
Rollout

TIA

Denoised
MDP

Reward

Obs.

Signal

Noise

Signal

Noise

Cheetah Run
Noiseless

Reacher Easy
Video Background

Walker Walk
Video Background

+ Noisy Sensor

Cheetah Run
Video Background
+ Camera Jittering

Recon.

Recon.

Recon.

Dreamer

Figure D-9: Complete visualization of the different DMC variants and factorizations learned
by TIA and Denoised MDP. In addition to visualizations of Figure 5-7, we also visualize full
reconstructions from Dreamer, TIA, and Denoised MDP.
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Figure D-10: Effect of choosing 𝛽 in Denoised MDP on DMC policy optimization results.
Setting 𝛽 = 1 disables regularization and is only run on noiseless variants.

Noiseless Video Background
Video Background
+ Noisy Sensor

Video Background
+ Camera Jittering

Policy Learning:
Backprop via Dynamics

Cheetah Run 1 0.125 0.25 0.25

Walker Walk 1 0.25 0.25 0.5

Reacher Easy 1 0.25 0.25 0.25

Policy Learning:
SAC (Latent-Space)

Cheetah Run 1 0.125 0.125 0.25

Walker Walk 1 0.25 0.125 0.5

Reacher Easy 1 0.125 0.25 0.25

Table D.5: 𝛽 choices for Denoised MDP results shown in Table 5.1 and Figure D-8. We
choose 𝛽 = 1 (i.e., disabling regularization) for all noiseless environments, and tuned others.
However, as seen in Figure D-10, the results often are not too sensitive to small 𝛽 changes.
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Appendix E

Details and Additional Discussions

for Chapter 6

E.1 Mutual 𝑘-Nearest Neighbor Alignment Metric

For two models with representations 𝑓 , 𝑔 the mutual 𝑘-nearest neighbor metric

measures the average overlap of their respective nearest neighbor sets. In this section,

we refer to this metric as 𝑚NN, which we will formally define below.

For cross-modal domains, define (𝑥𝑖, 𝑦𝑖) ∈ 𝒳 as a sample from the data distribution

𝒳 (e.g. image-caption dataset). For the single domain alignment measurements, the

samples are equivalent 𝑥𝑖 = 𝑦𝑖 (e.g., images for vision, and text for language). Let

{𝑥𝑖, 𝑦𝑖}𝑏𝑖=1 be the corresponding mini-batch sampled from this data distribution. Then

given two model representations 𝑓 and 𝑔 the corresponding features are: 𝜑𝑖 = 𝑓(𝑥𝑖)

and 𝜓𝑖 = 𝑔(𝑦𝑖), where the collection of these features are denoted as Φ = {𝜑1, . . . , 𝜑𝑏}

and Ψ = {𝜓1, . . . , 𝜓𝑏}. Then for each feature pair (𝜑𝑖, 𝜓𝑖), we compute the respective

nearest neighbor sets 𝒮(𝜑𝑖) and 𝒮(𝜓𝑖).

𝑑knn(𝜑𝑖,Φ ∖ 𝜑𝑖) = 𝒮(𝜑𝑖) (E.1)

𝑑knn(𝜓𝑖,Ψ ∖ 𝜓𝑖) = 𝒮(𝜓𝑖) (E.2)

where 𝑑knn returns the set of indices of its 𝑘-nearest neighbors. Then we measure its
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average intersection via

𝑚NN(𝜑𝑖, 𝜓𝑖) =
1

𝑘
|𝒮(𝜑𝑖) ∩ 𝒮(𝜓𝑖)| (E.3)

where | · | is the size of the intersection.

The choice to use mutual nearest-neighbors Our initial efforts to measure

alignment with CKA revealed a very weak trend of alignment between models, even

when comparing models within their own modality. This has also been observed

by Bansal et al. (2021), which had relied on alternative metrics such as model-stitching

as it “reveals aspects of representations that measures such as centered kernel alignment

(CKA) cannot” Bansal et al. (2021).

We chose to use nearest-neighbor as a metric, as methods like CKA has a very

strict definition of alignment, which may not fit our current needs. For instance,

understanding the precise similarity between unrelated items, such as an orange and

Bill Gates, may not be critical.

Relationship between CKA and Mutual Nearest-Neighbors Let 𝜑𝑖 ∈ R𝑛

and 𝜓𝑖 ∈ R𝑚 be vectorized features of two models (e.g. language and vision models).

Let K𝑖𝑗 = 𝜅(𝜑𝑖, 𝜑𝑗) and L𝑖𝑗 = 𝜅(𝜓𝑖, 𝜓𝑗) be the kernel matrices computed from a

dataset using some kernel-function 𝜅. Using an inner-product kernel, the 𝑖𝑗-th entry

of the centered counterpart of these Kernel matrices is:

K̄𝑖𝑗 = ⟨𝜑𝑖, 𝜑𝑗⟩ − E𝑙[⟨𝜑𝑖, 𝜑𝑙⟩] L̄𝑖𝑗 = ⟨𝜓𝑖, 𝜓𝑗⟩ − E𝑙[⟨𝜓𝑖, 𝜓𝑙⟩] (E.4)

Then, the cross-covariance of K and L is given by:

HSIC(K,L) =
1

(𝑛− 1)2
(K̄L̄) (E.5)

which serves as an empirical estimator of the Hilbert-Schmidt Independence Crite-

rion Gretton et al. (2005). The Centered Kernel Alignment (CKA) Kornblith et al.
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(2019) is then its normalized counterpart:

CKA(K,L) =
HSIC(K,L)√︀

HSIC(K,K)HSIC(L,L)
(E.6)

CKA measures the congruence between two random variables, with a maximum

alignment of 1 and a minimum of 0. It is invariant to isotropic scaling and offers

a strict notion of alignment, measuring alignment across all samples. Hence, the

CKA score reflects the global similarities of the models. This can be illustrated by

expanding the trace term in HSIC:

(K̄L̄) =
∑︁
𝑖

∑︁
𝑗

(⟨𝜑𝑖, 𝜑𝑗⟩ − E𝑙[⟨𝜑𝑖, 𝜑𝑙⟩]) (⟨𝜓𝑖, 𝜓𝑗⟩ − E𝑙[⟨𝜓𝑖, 𝜓𝑙⟩]) (E.7)

One can modify the definition of alignment to restrict the cross-covariance measurement

to samples considered to be nearest neighbors of the current sample 𝑖. This emphasizes

similarity over dissimilarity, biasing the measure toward local alignment:

Alignknn(K,L) =
∑︁
𝑖

∑︁
𝑗

𝛼(𝑖, 𝑗) · (⟨𝜑𝑖, 𝜑𝑗⟩ − E𝑙[⟨𝜑𝑖, 𝜑𝑙⟩]) (⟨𝜓𝑖, 𝜓𝑗⟩ − E𝑙[⟨𝜓𝑖, 𝜓𝑙⟩])

(E.8)

where 𝛼(𝑖, 𝑗) = 1[𝜑𝑗 ∈ knn(𝜑𝑖) ∧ 𝜓𝑗 ∈ knn(𝜓𝑖) ∧ 𝑖 ̸= 𝑗] (E.9)

Where 𝛼(𝑖, 𝑗) is a scalar weighting that assigns 1 if 𝑗 is a mutual nearest neighbors

to both 𝜑𝑖 and 𝜓𝑖, and 0 otherwise. We refer to this metric as the Centered Kernel

Nearest-Neighbor Alignment (CKNNA) metric. As the number of nearest neighbors

𝑘 → dim(K), we recover the original CKA metric.

CKNNA(K,L) =
Alignknn(K,L)√︀

Alignknn(K,K),Alignknn(L,L)
(E.10)

We can further relax the metric to treat the cross-covariance term identically across

all nearest-neighbor samples. This is equivalent to the assumption that all nearby

339



101 100.78101.30101.48

0.4

0.2

0.0

0.2

0.4
Im

ag
eN

et
21

K

101 100.78101.30101.48

0.4

0.2

0.0

0.2

0.4

M
A

E

101 100.78101.30101.48

LANGUAGE model perplexity (log-scale)

0.4

0.2

0.0

0.2

0.4

0.6

D
IN

O
v2

Alignment trend using CKNNA metric

101 100.78101.30101.48

0.4

0.2

0.0

0.2

0.4

0.6

C
LI

P

101 100.78101.30101.48

0.4

0.2

0.0

0.2

0.4

0.6

C
LI

P 
(I1

2K
 ft

)

K=1000 K=800 K=500 K=200 K=100 K=50 K=20 K=10

Figure E-1: Cross-modal alignment increases locally: Alignment trend when varying
the top-𝑘 nearest neighbors in the CKNNA metrics (eqn:cknna). We center alignment score
to the smallest language model and divide the total trend by the standard deviation. When
𝑘 = 1024, we recover the original CKA metric, and when 𝑘 < |𝒳 | it closely resembles the
mutual nearest-neighbor metric 𝑚NN. Each line represents the average of all LLM models for
a specific 𝑘. As we decrease 𝑘, the alignment becomes more pronounced.

samples have the same distance. This simplification leads us back to the mutual

nearest neighbor metric:

∑︁
𝑖

∑︁
𝑗

𝛼(𝑖, 𝑗) · 1 = 𝑛 · 𝑘 ·𝑚NN(𝜑𝑖, 𝜓𝑖) (E.11)

By equating these metrics, we analyze the changes in alignment between language

and vision models as we vary the number of neighbors 𝑘 in Equation (E.10). In

Figure E-1, we compute the average alignment score across all LLM models. For

each 𝑘, we center the scores to the smallest vision model and divide by the standard

deviation of the scores. We find that high values of 𝑘 show less conclusive alignment

across tasks while decreasing 𝑘 shows a coherent trend across both models and tasks.
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E.2 Consistency across various metrics

We describe the metrics in tbl:metrics and their corresponding properties. The

symmetric property implies that the metric is symmetric with respect to the data

points 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). The global property means all samples are used to compute

the distance with respect to every sample. The ordinal property is when the ordering

of the distance is taken into consideration. For example, mutual nearest neighbor is

not ordinal since the nearest neighbors {𝑎, 𝑏, 𝑐} and {𝑐, 𝑎, 𝑏} are treated equally. The

batchable property is a computational property that makes it feasible to compute in a

reasonable time frame.

Vision-vision comparison In Figure E-3, we evaluate Spearman’s rank correla-

tion among different metrics and hyperparameters over 78 vision models (details in

Appendix E.3.1). We find most metrics highly correlated with each other.

Cross-modal comparison We measure vision-language alignment using a range of

alternative metrics. We visualize the corresponding alignment results in Figures E-4

and E-5. Our findings indicate that alignment sensitivity not only depends on the

metric used to compute it but also varies according to the specific tasks on which the

vision models are trained.
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Metric Property Description

symmetric global ordinal batchable

CKA 3 3 3 3

Centered Kernel Alignment (CKA; Kornblith
et al. (2019)) measures the similarity of neural
networks by comparing the alignment of their
kernel induced by their feature spaces.

Unbiased CKA 3 3 3 3
Unbiased estimator of CKA that corrects for
sample bias in HSIC Song et al. (2012).

SVCCA 3 3 3 3

Singular Value Canonical Correlation Analy-
sis (SVCCA; Raghu et al. (2017)) compares
neural networks by decomposing their activi-
ties into singular vectors and measuring cor-
relation.

Mutual 𝑘-NN 3 3
Measures the intersection over union (IoU) of
nearest neighbors between two models.

CKNNA 3 3* 3 3
Modified CKA measure that computes the
kernel alignment only for its nearest neigh-
bors. See sec:align-metric.

Cycle 𝑘-NN 3

Measures whether the nearest neighbor in one
domain also considers the original sample as
its nearest neighbor in the other domain.

Edit 𝑘-NN 3 3* 3

Computes the edit distance required to match
the nearest neighbors between two datasets.
The score is normalized by the maximum edit
distance.

LCS 𝑘-NN 3 3* 3
Calculates the longest common subsequence
of nearest neighbors and is normalized by the
sequence length.

Figure E-2: Comparative analysis of neural network similarity metrics. 3* indicates the
metric is global and still meaningful when the nearest neighbor 𝑘 is set to maximum batch-size
𝑘 = |𝒳 |.
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Figure E-3: Vision-vision alignment measured with various metrics. Spearman’s
rank correlation among different metrics and batch sizes (bsz) when used to measure alignment
among 78 vision models (see Appendix E.3.1 for details of these models). All 𝑝-values are
below 2.24 × 10−105. Our vision-vision analysis in Figure 6-2 is based on the first metric
(Mutual 𝑘-NN with 𝑘 = 10 and bsz = 1000).
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E.3 Experiments on Evaluating Alignment and Con-

vergence

To demonstrate representational convergence, we take off-the-shelf models at multiple

scales and multiple modalities and measure their representational alignment.

E.3.1 Vision-Vision Alignment and Representation Quality

We consider 78 vision models in total:

• 17 ViT models ranging from ViT-tiny to ViT-giant, trained on tasks including

ImageNet-21k (Dosovitskiy et al., 2020) classification, Masked Autoencoders (He

et al., 2021), DINO (Caron et al., 2021), and CLIP (Radford et al., 2021),

including some finetuned on ImageNet-12k.

• 1 randomly initialized ResNet-50.

• 11 ResNet-50 models trained with contrastive learning on ImageNet-1k, Places-

365 (Zhou et al., 2017; López-Cifuentes et al., 2020), and 9 synthetic image

datasets used in Baradad et al. (2022).

• 49 ResNet-18 models trained with Alignment and Uniformity contrastive loss

(?) on ImageNet-100, Places-365, and 47 realistic and synthetic image datasets

from Baradad et al. (2021).

To test representation quality, we evaluate linear probing performance on all

19 VTAB classification tasks (Zhai et al., 2019), which is a standard multi-task

transfer learning benchmark containing structured, specialized, and natural datasets

covering diverse domains. To reduce compute requirements, we subsample training

and validation datasets to have at most 10,000 samples. We consider a representation

solves a task if its performance is ≥ 80% of the best performance on that task across

all 78 models.
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To compute the alignment metric, we use 𝑘 = 10 nearest neighbors over 1000

image representations computed on Places-365’s validation dataset (Zhou et al., 2017).

This dataset is disjoint from VTAB datasets, although both contain natural images.

E.3.2 Cross-Modal Alignment

We compare the representation of an image in a vision model to the representation of

a caption describing that image in a language model. The language model families we

consider are BLOOM (BigScience et al., 2022), OpenLLaMA (Geng and Liu, 2023), and

LLaMA (Touvron et al., 2023). For Figure 6-4, we included more recent model families

such as OLMo Groeneveld et al. (2024), LLaMA3 (Meta, 2024), Gemma (Team et al.,

2024), and Mistral/Mixtral (Jiang et al., 2023, 2024). These models were downloaded

from Huggingface (Wolf et al., 2019).

For vision models, we consider ViT models (Dosovitskiy et al., 2020) of various sizes

trained on various data and objectives. We mainly consider the popular vision models:

classification on ImageNet-21K (Russakovsky et al., 2015), MAE (He et al., 2021),

DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021), and CLIP finetuned on

ImageNet-12K. These models were downloaded from PyTorch Image Models (TIMM;

timm). This is a subset of the models used in vision-vision comparison.

To compute the alignment metric, we use 𝑘 = 10 nearest neighbors over 1024

samples from WIT (Wikipedia-based Image Text)(Srinivasan et al., 2021). For the

vision model, we use class token of each layer, and for the language model, we average

pool each layer to a single token. Since it is not trivial to determine where the

alignment might occur, we draw inspiration from BrainScoreSchrimpf et al. (2018) and

compute pairwise alignment scores, then take the maximum. One of these pairwise

comparisons also includes concatenated features. We apply 𝑙2 normalization to the

features before measuring the distance. As transformer architectures have “emergent

outliers” (Dettmers et al., 2022), we truncate the elements in the features that are

above the 95-th percentile.

Simply taking the last token did not show any strong alignment signal. We

also experimented with prompting the language model and taking the last token
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representation. The prompt we used was

An image with the caption ‘<caption>’. This is an image of a <fill>

Using prompting showed similar trends to average pooling but had slightly lower

alignment scores.

E.4 Color Cooccurrence Experiment

Here we describe the details of how we created the four color representations visualized

in Figure 6-8, from left to right.

Perceptual representation from CIELAB color space We embed pixels taken

from the CIFAR-10 image dataset (Krizhevsky et al., 2009; Torralba et al., 2008)

based on the CIELAB color space, which is designed as a perceptually uniform space

that changes numerical values correspond to similar perceived changes in color.

Three representations from cooccurrence in VISION and LANGUAGE

For these three representations, we first obtain a dissimilarity matrix over colors (in

different ways detailed below), then use multidimensional scaling (Shepard, 1980) to

find a 3-dimensional embedding in which Euclidean distance between the embeddings

for 𝐴 and 𝐵, 𝑧𝐴 and 𝑧𝐵, best matches this dissimilarity matrix. We use 1,000 fits and

take the best match. Afterward, we visually align it with the CIELAB space by finding

the best rotation, translation, scaling, and flipping, by running the Kabsch-Umeyama

algorithm (Kabsch, 1976, 1978; Umeyama, 1991) twice, once on z and once on −z,

to account for flipping. The dissimilarity matrix we used in each case is described as

following:

• VISION: Pixel cooccurrence. We collect color cooccurrence statistics from

the CIFAR-10 dataset, and estimate a joint distribution 𝑝(𝐴,𝐵) over 300,000

randomly sampled pixel colors 𝐴 and 𝐵 that occur within a radius of at most

4 pixels of one another. Colors are quantized on a grid in RGB space and
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represented as discrete variables, and 𝑝(𝐴,𝐵) is modeled as a table of normalized

counts, from which we compute the empirical pointwise mutual information

matrix 𝐾PMI(𝐴,𝐵). Quantization ensures that there is no bias from how color

distances are represented in RGB space. Dissimilarity matrix is defined as

−𝐾PMI(𝐴,𝐵) + 𝑐, where 𝑐 = max𝐴,𝐵𝐾PMI(𝐴,𝐵) is an offset to ensure non-

negativity (similar to the constant in Section 6.4.2 and Proposition E.6.1 that

ensures neural networks can express 𝐾PMI).

• LANGUAGE. We used an approach similar to Abdou et al. (2021).

– We take 20 pairs of (color, word) appeared in the dataset collected by

Lindsey and Brown (2014), where 51 participants were asked to free name

each of the 330 colors from the Munsell Color Chart. We filtered words that

appeared less than 100 times, and computed each word’s associate color

by taking the centroid in CIELAB space. Our filtering process followed

Abdou et al. (2021) exactly, but resulted in 20 colors, a slightly different

set than the 18 colors they claimed.

– For each of the 20 color words <col>, we construct three sentences:

The color <col>.

This color is <col>.

The color of this thing is <col>.

and obtain the average sentence embedding from the language encoder,

as the embedding for <col> (details below). We find this approach more

effective than Abdou et al. (2021), which uses object names that potentially

have color biases, even though the objects may appear in multiple colors.

– Unlike Abdou et al. (2021), we did not perform linear regression from

language embedding to CIELAB space, which distorts distances and easily

overfits with only 20 samples. Instead, we used multidimensional scaling to

best preserve distances, as described above.

347



– Masked language contrastive learning (SimCSE) embedding: We

used sentence embedding from the unsupervised SimCSE RoBERTa-L (Gao

et al., 2021) to encode the above sentences into 1024-dimensional embed-

dings, and used the pairwise Euclidean distances among <col> embeddings

as the dissimilarity matrix.

– Masked language predictive learning (RoBERTa) embedding: We

concatenated hidden states of the last four layers of RoBERTa-L (Liu et al.,

2019), following (Devlin et al., 2018). We averaged across token dimensions,

and obtained a 4096-dimensional embedding for each of the above sentences,

and used the pairwise Euclidean distances among <col> embeddings as the

dissimilarity matrix.

E.5 Caption Density Experiments

We use LLaMA3-8B-Instruct (Meta, 2024) to generate summary captions at various

densities for images in the Densely Captioned Images dataset (Urbanek et al., 2023)

from the train split. Following Urbanek et al. (2023), we prompt the language model

with the following instructions to generate captions at differing granularity:

system: You are given a full-text description of an image. You

should summarize it into about <num_words> words, being sure to include

as much salient visual information as possible given the <num_words>

word constraint, especially information from the start of the original

description. The new description should apply for the original image.

Respond with only the summary, in one line.

user: <original_caption>

We measure the alignment with this generated caption to test our hypothesis that

denser captations would result in higher alignment scores. In Figure 6-9, we find that

the alignment score also improves as caption length increases.
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E.6 Analysis of Contrastive Learners

E.6.1 Contrastive objectives learn pointwise mutual informa-

tion

There are two widely used forms of contrastive objectives. We now discuss each form

in detail and show how they both are minimized by the pointwise mutual information

(PMI) as stated in Equation (6.5). To simplify notation, we consider learning the

bivariate model 𝑔(𝑥𝑎, 𝑥𝑏) ∈ R. In Section 6.4, such 𝑔 is optimized within the family of

{𝑔 = ⟨𝑓𝑋 , 𝑓𝑋⟩ : 𝑓𝑋 ∈ ℱ𝑋}.

Recall that our positive pairs are sampled from (𝑥, 𝑥+) ∼ 𝑃coor, and that the

negative pairs are sampled independently from its marginals which we denote as

(𝑥, 𝑥−)
i.i.d.∼ 𝑃 where 𝑃 (𝑥) =

∑︀
𝑥+
𝑃coor(𝑥, 𝑥+).

1. The binary NCE loss (Gutmann and Hyvärinen, 2010) is defined with a

certain prior over sampling positive vs. negative pairs. Let 𝑝pos be the probability

of sampling a positive pair. Then the loss is given by

ℒbinary-NCE(𝑔) , 𝑝pos·E(𝑥,𝑥+)∼𝑃coor [− log 𝜎(𝑔(𝑥, 𝑥+))]+(1−𝑝pos)·E(𝑥,𝑥−)
i.i.d.∼ 𝑃

[− log 𝜎(−𝑔(𝑥, 𝑥−))] .

(E.12)

The Bayes optimal solution is given by

𝑔(𝑥𝑎, 𝑥𝑏) = log
𝑃 (pos | 𝑥𝑎, 𝑥𝑏)

1− 𝑃 (pos | 𝑥𝑎, 𝑥𝑏)
(E.13)

= log
𝑃 (pos, 𝑥𝑎, 𝑥𝑏)

𝑃 (neg, 𝑥𝑎, 𝑥𝑏)
(E.14)

= log
𝑝pos · 𝑃coor(𝑥𝑎, 𝑥𝑏)

(1− 𝑝pos)𝑃 (𝑥𝑎)𝑃 (𝑥𝑏)
(E.15)

= log
𝑃coor(𝑥𝑎, 𝑥𝑏)

𝑃 (𝑥𝑎)𝑃 (𝑥𝑏)
+ log

𝑝pos
1− 𝑝pos

(E.16)

= 𝐾PMI(𝑥𝑎, 𝑥𝑏) + 𝑐𝑋 . (E.17)

2. The InfoNCE loss (Oord et al., 2018) is defined with randomly sampling

one positive pair along with 𝐾 negative ones. With some hyperparameter 𝜏 > 0,
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the loss is given by

ℒInfoNCE(𝑔) , E (𝑥,𝑥+)∼𝑃coor

(𝑥
(1)
− ,𝑥

(2)
− ,...,𝑥

(𝐾)
− )

i.i.d.∼ 𝑃

[︃
− log

𝑒𝑔(𝑥,𝑥+)/𝜏

𝑒𝑔(𝑥,𝑥+)/𝜏 +
∑︀𝐾

𝑖=1 𝑒
𝑔(𝑥,𝑥

(𝑖)
− )/𝜏

]︃
. (E.18)

The Bayes optimal solution is given by

𝑒𝑔(𝑥,𝑥+)/𝜏

𝑒𝑔(𝑥,𝑥+)/𝜏 +
∑︀𝐾

𝑖=1 𝑒
𝑔(𝑥,𝑥

(𝑖)
− )/𝜏

=
𝑃coor(𝑥+ | 𝑥)

∏︀
𝑗 𝑃 (𝑥

(𝑗)
− )

𝑃coor(𝑥+ | 𝑥)
∏︀

𝑗 𝑃 (𝑥
(𝑗)
− ) +

∑︀
𝑖 𝑃coor(𝑥

(𝑖)
− | 𝑥)𝑃 (𝑥+)

∏︀
𝑗 ̸=𝑖 𝑃 (𝑥

(𝑗)
− )

(E.19)

=
𝑃coor(𝑥+ | 𝑥)/𝑃 (𝑥+)

𝑃coor(𝑥+ | 𝑥)/𝑃 (𝑥+) +
∑︀

𝑖 𝑃coor(𝑥
(𝑖)
− | 𝑥)/𝑃 (𝑥(𝑖)− )

.

(E.20)

For 𝜏 = 1, this optima corresponds to 𝑔 choices where

𝑔(𝑥𝑎, 𝑥𝑏) = log
𝑃coor(𝑥𝑏 | 𝑥𝑎)

𝑃 (𝑥𝑏)
+ 𝑐𝑋(𝑥𝑎) (E.21)

= 𝐾PMI(𝑥𝑎, 𝑥𝑏) + 𝑐𝑋(𝑥𝑎). (E.22)

For the general 𝜏 ̸= 1 case, we have 𝑔 (and corresponding 𝑓𝑋) recovers 𝐾PMI up

to an offset and a scale. Our main argument in Section 6.4 that 𝑓𝑋 recovers

𝐾PMI still holds.

E.6.2 Contrastive learners can represent 𝐾PMI exactly under

smoothness conditions

We want to express 𝐾PMI + 𝐶 using some representation function 𝑓𝑋 : 𝒳 → R𝑛 so

that

⟨𝑓𝑋(𝑥𝑎), 𝑓𝑋(𝑥𝑏)⟩ = 𝐾PMI(𝑥𝑎, 𝑥𝑏) + 𝐶, for some 𝐶. (E.23)

For such an 𝑓𝑋 to exist, an equivalent criterion is that 𝐾PMI+𝐶 is positive semi-definite

(PSD), as can be seen from eigendecomposition.
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Proposition E.6.1. Suppose that the off-diagonal elements of 𝐾PMI are bounded

within [log 𝜌min, log 𝜌min + 𝛿] ∈ (−∞, 0]. We have 𝐾PMI + 𝐶 is positive semi-definite

(PSD) for some 𝐶 if the joint distribution is sufficiently smooth:

𝑃coor(𝑧𝑖 | 𝑧𝑖)
𝑃coor(𝑧𝑖)

≥ 𝑒𝑁𝛿𝜌min, ∀𝑖. (E.24)

Proof. Note that 𝐾PMI + 𝐶 still only has non-positive off-diagonal elements if

−𝐶 ≥ log 𝜌min + 𝛿. (E.25)

For such 𝐶, it is diagonally dominant (and thus PSD) if,

∀𝑖, 𝐾PMI(𝑧𝑖, 𝑧𝑖) + 𝐶 ≥
∑︁
𝑗 ̸=𝑖

|𝐾PMI(𝑧𝑖, 𝑧𝑗) + 𝐶| = −(𝑁 − 1)𝐶 −
∑︁
𝑗 ̸=𝑖

𝐾PMI(𝑧𝑖, 𝑧𝑗), (E.26)

or equivalently,

∀𝑖, 𝑁𝐶 +
∑︁
𝑗

𝐾PMI(𝑧𝑖, 𝑧𝑗) ≥ 0. (E.27)

The following choice of 𝐶 readily satisfies the above Equation (E.27):

𝐶 , −min
𝑖

1

𝑁

∑︁
𝑗

𝐾PMI(𝑧𝑖, 𝑧𝑗). (E.28)

Therefore, it remains to show that Equation (E.25) is true. Note that

−𝐶 , min
𝑖

1

𝑁

∑︁
𝑗

𝐾PMI(𝑧𝑖, 𝑧𝑗) ≥
𝑁 − 1

𝑁
log 𝜌min +

1

𝑁
(min

𝑖
𝐾PMI(𝑧𝑖, 𝑧𝑖)). (E.29)

Therefore, it suffices to have

log 𝜌min + 𝛿 ≤ 𝑁 − 1

𝑁
log 𝜌min +

1

𝑁
(min

𝑖
𝐾PMI(𝑧𝑖, 𝑧𝑖)). (E.30)

Rearranging terms gives the desired condition

𝑃coor(𝑧𝑖 | 𝑧𝑖)
𝑃coor(𝑧𝑖)

≥ 𝑒𝑁𝛿𝜌min, ∀𝑖. (E.31)
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Remark E.6.2. Proposition E.6.1 is one example that a sufficiently smooth world or

a sufficiently high sampling rate allows the PMI kernel 𝐾PMI to be exactly represented

as inner products of a learned feature space (up to a scale). The condition here

can be satisfied, for example, if the off-diagonal terms decay linearly with respect

to 𝑁 and stay sufficiently close to each other. While the condition is somewhat

strict, it captures the essence that smoothness and continuity allow easier learning.

Nonetheless, we note that exact representation is not necessary for convergence, and

thus this requirement can likely be relaxed. Please see Section 6.6 for discussions on

practical settings.
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(d) Mutual 𝑘-NN (𝑘 = 10)

Figure E-4: Cross-modal alignment for various metrics (Figure 1 of 2).
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(d) Longest-Common-Subsequence 𝑘-NN (𝑘 = 10)

Figure E-5: Cross-modal alignment for various metrics (Figure 2 of 2).
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